[APIO / CTSC 2007]数据备份

题目描述

你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。

然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。

已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。

每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。

然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份。

任一个办公楼都属于唯一的配对组(换句话说,这 2K 个办公楼一定是相异的)。

此外,电信公司需按网络电缆的长度(公里数)收费。

因而,你需要选择这 K对办公楼使得电缆的总长度尽可能短。

换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。

下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。

这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。

上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。

这样可按要求使用 K=2 条电缆。第 1 条电缆的长度是 3km―1km = 2km,第 2 条电缆的长度是 6km―4km = 2 km。

这种配对方案需要总长 4km 的网络电缆,满足距离之和最小的要求。

输入格式:

输入文件的第一行包含整数 n 和 k,其中 n(1≤n≤100 000)表示办公楼的数目,k(1≤k≤n/2)表示可利用的网络电缆的数目。

接下来的 n 行每行仅包含一个整数(0≤s≤1000 000 000), 表示每个办公楼到大街起点处的距离。这些整数将按照从小到大的顺序依次出现。

输出格式:

输出文件应当由一个正整数组成,给出将 2K 个相异的办公楼连成 K 对所需的网络电缆的最小总长度。

两个贪心混成的题。

第一个贪心:所选的网络电缆一定是连接相邻的办公楼。

证明:(虽然感觉像就非常像)如果有两对点不满足,那么一定是下列情况中的一种:

A1  A2  A3  A4  A5

1.A1连A2,A3连A5,很明显,A3连A4更优

2.A1连A3,A4连A2,那么A1连A2,A3连A4也更优(也说明连的区间不重合)

这样,可以知道相当于是在\((n-1)\)线段中选取\(k\)条不共点的线段。

也就是说,不能选择相邻的线段。

第二个贪心:同种树

考虑选了线段\(i\),怎么样表示选了线段\(i+1\)和线段\(i-1\)后比线段\(i\)更优呢?

选择线段\(i\)后,将线段\(i+1\)和线段\(i-1\)标记为不可选。

往堆中新添一个点\(p\),权值为\(val[i+1]+val[i-1]-val[i]\),那么选了点\(p\)就表示选择了线段\(i+1\)以及线段\(i-1\)

容易扩展到多个点的情况。

此时,单独的记录\(i+1\)和\(i-1\)是不行的,而是需要用一个链表来记录左右的节点。

时间复杂度\(O(k* \log n)\)

代码在此

[APIO / CTSC2007]数据备份 --- 贪心的更多相关文章

  1. BZOJ1150:[APIO/CTSC2007]数据备份——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1150 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的 ...

  2. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

  3. BZOJ_1150_[CTSC2007]数据备份Backup_堆+贪心

    BZOJ_1150_[CTSC2007]数据备份Backup_堆+贪心 Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏 ...

  4. 【链表】bzoj 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1136  Solved: 458[Submit] ...

  5. 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...

  6. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  7. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

  8. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  9. BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题

    Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...

随机推荐

  1. 【BZOJ】3771: Triple FTT+生成函数

    [题意]给定n个物品,价值为$a_i$,物品价格互不相同,求选一个或两个或三个的价值为x的方案数,输出所有存在的x和对应方案数.$ai<=40000$. [算法]生成函数+FFT [题解]要求价 ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. SDUT 3929

    Description 蓝色空间号和万有引力号进入了四维水洼,发现了四维物体--魔戒. 这里我们把飞船和魔戒都抽象为四维空间中的一个点,分别标为 "S" 和 "E&quo ...

  4. react input 设置默认值

    1.text类型 <input type="text" value={默认值} />  ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...

  5. Coursera在线学习---第二节.Octave学习

    1)两个矩阵相乘 A*B 2)两个矩阵元素位相乘(A.B矩阵中对应位置的元素相乘) A.*B 3)矩阵A的元素进行平方 A.^2 4)向量或矩阵中的元素求倒数 1./V    或   1./A 5) ...

  6. NASA: SpaceX的猎鹰9号火箭将龙飞船发射到国际空间站

    At 5:42 a.m. EDT Friday, June 29, 2018, SpaceX’s Dragon spacecraft lifts off on a Falcon 9 rocket fr ...

  7. PIP安装时报The repository located at pypi.douban.com is not a trusted or secure host and is being ignore

    C:\WINDOWS\system32>pip install scrapyCollecting scrapy The repository located at pypi.douban.com ...

  8. Linux 内核进程管理之进程ID【转】

    转自:http://www.cnblogs.com/hazir/p/linux_kernel_pid.html Linux 内核使用 task_struct 数据结构来关联所有与进程有关的数据和结构, ...

  9. 45.Jump Game II---贪心---2018大疆笔试题

    题目链接 题目大意:与55题类似,只是这里要求出跳数. 法一(借鉴):贪心.cur表示当前能到达的最远距离,pre表示上一次能到达的最远距离,每到一个位置更新一次最远距离cur,如果当前位置超过了上一 ...

  10. js事件、事件委托

    事件流 事件流:页面中接收事件的顺序: IE的事件流是冒泡流,其他的浏览器是捕获流,如下图: DOM事件流 DOM 事件流同时支持这两种事件流,并且规定DOM任何事件流都包含三个阶段:事件捕获阶段.处 ...