[CF115E]Linear Kingdom Races

题目大意:

有\(n(n\le10^5)\)个物品,编号为\(1\sim n\)。选取第\(i\)个物品需要\(c_i\)的代价。另外有\(m(m\le10^5)\)个条件,表示若\(l_i\sim r_i\)间的物品全部选择,可以获得\(p_i\)的收益。求最大收益。

思路:

用\(f[i]\)表示考虑完前\(i\)个物品是否选取能获得的最大收益。

转移方程为\(f[i]=\max\{f[j]-\texttt{cost}(j+1,i)+\texttt{profit}(j+1,i)\}\)。

使用线段树优化即可。

时间复杂度\(\mathcal O((n+m)\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=2e5+1,M=2e5;
int c[N];
int64 f[N];
struct Segment {
int l,r,p;
bool operator < (const Segment &rhs) const {
return r<rhs.r;
}
};
Segment s[M];
class SegmentTree {
#define _left <<1
#define _right <<1|1
#define mid ((b+e)>>1)
private:
int64 val[N<<2],tag[N<<2];
void push_up(const int &p) {
val[p]=std::max(val[p _left],val[p _right]);
}
void push_down(const int &p) {
if(tag[p]==0) return;
tag[p _left]+=tag[p];
tag[p _right]+=tag[p];
val[p _left]+=tag[p];
val[p _right]+=tag[p];
tag[p]=0;
}
public:
void modify(const int &p,const int &b,const int &e,const int &l,const int &r,const int64 &x) {
if(b==l&&e==r) {
val[p]+=x;
tag[p]+=x;
return;
}
push_down(p);
if(l<=mid) modify(p _left,b,mid,l,std::min(mid,r),x);
if(r>mid) modify(p _right,mid+1,e,std::max(mid+1,l),r,x);
push_up(p);
}
int64 query(const int &p,const int &b,const int &e,const int &l,const int &r) {
if(b==l&&e==r) return val[p];
push_down(p);
int64 ret=0;
if(l<=mid) ret=std::max(ret,query(p _left,b,mid,l,std::min(mid,r)));
if(r>mid) ret=std::max(ret,query(p _right,mid+1,e,std::max(mid+1,l),r));
return ret;
}
#undef _left
#undef _right
#undef mid
};
SegmentTree t;
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=n;i++) c[i]=getint();
for(register int i=0;i<m;i++) {
const int l=getint(),r=getint(),p=getint();
s[i]=(Segment){l,r,p};
}
std::sort(&s[0],&s[m]);
for(register int i=1,j=0;i<=n;i++) {
t.modify(1,0,n,0,i-1,-c[i]);
for(;j<m&&s[j].r<=i;j++) {
t.modify(1,0,n,0,s[j].l-1,s[j].p);
}
f[i]=std::max(f[i-1],t.query(1,0,n,0,i-1));
t.modify(1,0,n,i,i,f[i]);
}
printf("%lld\n",f[n]);
return 0;
}

[CF115E]Linear Kingdom Races的更多相关文章

  1. 【CF115E】Linear Kingdom Races 题解(线段树优化DP)

    前言:前辈讲课时设的状态还是有些繁琐,感觉题解设的状态更简洁. -------------- 题目链接 题目大意:给定$n$条道路和$m$场比赛,每个道路修建需要$c_i$,每场比赛需要使用$[l_i ...

  2. Linear Kingdom Races CodeForces - 115E (线段树优化dp)

    大意: n条赛道, 初始全坏, 修复第$i$条花费$a_i$, m场比赛, 第$i$场比赛需要占用$[l_i,r_i]$的所有赛道, 收益为$w_i$, 求一个比赛方案使得收益最大. 设$dp[i]$ ...

  3. [Codeforces 115E]Linear Kingdom Races

    题目大意: 有n块地,初始是荒地.你可以把某些荒地开垦(需要花费相应的价值\(a_i\)(正整数)),然后这些荒地就可以种田. 现在有m年,每年要在l到r区间内种田,获得p(正整数)的价值(必须保证l ...

  4. CodeForces - 115E:Linear Kingdom Races (DP+线段树+lazy)

    pro: 从左到有有N个车道,都有一定程度损坏,所以有不同的修理费a[]: 有M场比赛,每场比赛的场地是[Li,Ri],即如果这个区间的车道都被修理好,则可以举办这个比赛,并且收益是Pi.问最多得到多 ...

  5. C - Tram

    Problem description Linear Kingdom has exactly one tram line. It has n stops, numbered from 1 to n i ...

  6. blade and soul races guide

    Race Four races are available for those who wish to choose the path of martial arts: the careful Gon ...

  7. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  8. Java实现线性阈值模型(Linear Threshold Model)

    影响力传播的线性阈值模型: 网络中连接任意两个节点u,v之间的边都有权重,任意一个节点它的各个邻居节点的边的权重之和为1,即 N(v):neighbors of v. 网络中的节点分为已激活节点和未激 ...

  9. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

随机推荐

  1. 使用SPLUNK进行简单Threat Hunting

    通过订阅网上公开的恶意ip库(威胁情报),与SIEM平台中网络流量日志进行匹配,获得安全事件告警. 比如,这里有一个malware urls数据下载的网站,每天更新一次: https://urlhau ...

  2. shell读取文件的每一行内容并输出【转】

    写法一: #!/bin/bash while read line do echo $line done < file(待读取的文件) 写法二: #!/bin/bash cat file(待读取的 ...

  3. elk系列1之入门安装与基本操作【转】

    preface 我们每天都要查看服务器的日志,一方面是为了开发的同事翻找日志,另一方面是巡检服务器查看日志,而随着服务器数量以及越来越多的业务上线,日志越来越多,人肉运维相当痛苦了,此时,参考现在非常 ...

  4. git-定制属于你的log格式

    软件版本:    操作系统:ubuntu10.04     内核版本:Linux version 2.6.32-36-generic     git 版本:git version 1.7.0.4 1. ...

  5. 关于"轉淚點"与"轉捩點"

    经常看台湾偶像剧或台湾综艺节目的人,一定听过"转泪点"这个词,虽然我一直不知道这三个字具体是怎么写, 但其意思很容易明白,就是"转折点"的意思.今天无聊在看凤凰 ...

  6. css的背景图片background

    1.使用背景图片的标签定设置宽高,没有设置的话,也需要用内容来撑开标签. 2.如果对同一个标签分开设置背景图片和颜色,背景颜色一定要写在背景图片后面,不然会被覆盖 <!DOCTYPE html& ...

  7. apache 各种配置

    //apache 的网站配置文件 /usr/local/apache2/conf/extra/httpd-vhosts.conf -->在编辑这个文件前需要去httpd.conf把这个文件的注释 ...

  8. Linux下通过源码编译安装程序(configure/make/make install的作用,然后在/etc/profile文件里修改PATH环境变量)

    一.程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在 ...

  9. 如何删除git远程分支(转)

    1,在开发过程中,大家在远程创建了许多分支,有些是无用的,该如何删除呢,可以参考下面的方法. 如果不再需要某个远程分支了,比如搞定了某个特性并把它合并进了远程的 master 分支(或任何其他存放 稳 ...

  10. xshell 映射带跳板机服务器的端口到本地

    1.配置xshell连接跳板机服务器: 2. 3.可用navicate等同过端口连接远程数据库.