bzoj 4303 数列

  • 二维 \(KD-Tree\) 模板题.
  • \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区间的二叉搜索树,没有加点删点,建树时将它建成平衡的就好了.
  • 这使得一个 \(node\) 的左子树管辖 \([l,mid-1]\) ,右子树管辖 \([mid+1,r]\) , \(mid\) 处的信息存在自己处,不要写混.
  • 对于 \(k\) 维的 \(KD-Tree\) ,它每次更新/查询的时间复杂度是 \(O(n^{1-\frac 1 k})\) .所以本题总时间复杂度为 \(O(m\sqrt n)\).
  • 在常数优化上有一个小技巧:若答案 \(ans\) 对 \(2^k\) 取模,可以直接输出 $ans&(P-1) $.本题 \(536870912=2^{29}\).
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pii pair<int,int>
#define inf 0x7f7f7f7f
inline int read()
{
int x=0;
bool pos=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
pos=0;
for(;isdigit(ch);ch=getchar())
x=x*10+ch-'0';
return pos?x:-x;
}
const int MAXN=5e4+10;
const int P=536870912;
inline int add(int a,int b)
{
return (a + b) ;
}
inline int mul(int a,int b)
{
return a * b ;
}
int n,m,Tp;
struct node{
int tp;//维护的维度
int mi[2],ma[2];//[x/y]的最小,最大值
int v[2];//坐标
int ls,rs;
int tagadd,tagmul;
int val,len,sum;
bool operator < (const node& rhs) const
{
return v[Tp]<rhs.v[Tp];//当前比较的维度,全局变量储存.
}
node()
{
ls=rs=0;
tagadd=0;
tagmul=1;
sum=0;
}
}Tree[MAXN];
#define root Tree[o]
#define lson Tree[Tree[o].ls]
#define rson Tree[Tree[o].rs]
void pushup(int o)
{
root.mi[0]=min(root.v[0],min(lson.mi[0],rson.mi[0]));
root.mi[1]=min(root.v[1],min(lson.mi[1],rson.mi[1]));
root.ma[0]=max(root.v[0],max(lson.ma[0],rson.ma[0]));
root.ma[1]=max(root.v[1],max(lson.ma[1],rson.ma[1]));
}
int BuildTree(int l,int r,int tp)
{
Tp=tp;
int mid=(l+r)>>1;
int o=mid;
nth_element(Tree+l,Tree+mid,Tree+r+1);
root.tp=tp;
root.len=r-l+1;
if(l<mid)
root.ls=BuildTree(l,mid-1,(tp+1)%2);
if(r>mid)
root.rs=BuildTree(mid+1,r,(tp+1)%2);
pushup(o);
return o;
}
void Modifiy_mul(int o,int mulv)
{
root.val=mul(root.val,mulv);
root.tagmul=mul(root.tagmul,mulv);
root.tagadd=mul(root.tagadd,mulv);
root.sum=mul(root.sum,mulv);
}
void Modifiy_add(int o,int addv)
{
root.val=add(root.val,addv);
root.tagadd=add(root.tagadd,addv);
root.sum=add(root.sum,mul(root.len,addv));
}
void pushdown(int o)
{
if(root.tagmul!=1)
{
Modifiy_mul(root.ls,root.tagmul);
Modifiy_mul(root.rs,root.tagmul);
root.tagmul=1;
}
if(root.tagadd!=0)
{
Modifiy_add(root.ls,root.tagadd);
Modifiy_add(root.rs,root.tagadd);
root.tagadd=0;
}
}
void update(int o,int L,int R,int mulv,int addv)//修改第Tp维
{
if(L>root.ma[Tp] || R<root.mi[Tp])
return;
if(L<=root.mi[Tp] && root.ma[Tp]<=R)
{
Modifiy_mul(o,mulv);
Modifiy_add(o,addv);
return;
}
pushdown(o);
if(L<=root.v[Tp] && root.v[Tp]<=R)
{
root.val=mul(root.val,mulv);
root.val=add(root.val,addv);
}
pushdown(o);
update(root.ls,L,R,mulv,addv);
update(root.rs,L,R,mulv,addv);
root.sum=add(lson.sum,rson.sum);
root.sum=add(root.sum,root.val);
}
int query(int o,int L,int R)
{
if(L>root.ma[Tp] || R<root.mi[Tp])
return 0;
if(L<=root.mi[Tp] && root.ma[Tp]<=R)
return root.sum;
pushdown(o);
int res=0;
if(root.ls)
res=add(res,query(root.ls,L,R));
if(root.rs)
res=add(res,query(root.rs,L,R));
if(L<=root.v[Tp] && root.v[Tp]<=R)
res=add(res,root.val);
return res;
}
int rt;
void init()
{
Tree[0].ma[0]=Tree[0].ma[1]=-inf;
Tree[0].mi[0]=Tree[0].mi[1]=inf;
for(int i=1;i<=n;++i)
{
Tree[i].v[0]=i;
Tree[i].v[1]=read();
}
rt=BuildTree(1,n,0);
}
int main()
{
n=read(),m=read();
init();
while(m--)
{
int op=read();
int l,r,x,y;
if(op==0)
{
l=read(),r=read(),x=read(),y=read();
Tp=0;
update(rt,l,r,x,y);
}
else if(op==1)
{
l=read(),r=read(),x=read(),y=read();
Tp=1;
update(rt,l,r,x,y);
}
else if(op==2)
{
l=read(),r=read();
Tp=0;
printf("%d\n",query(rt,l,r)&(P-1));
}
else
{
l=read(),r=read();
Tp=1;
printf("%d\n",query(rt,l,r)&(P-1));
}
}
return 0;
}

bzoj 4303 数列的更多相关文章

  1. [BZOJ 2989]数列(二进制分组+主席树)

    [BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...

  2. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  3. BZOJ 3142 数列(组合)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3142 题意:给出n,K,m,p.求有多少长度为K的序列A,满足:(1)首项为正整数:(2 ...

  4. BZOJ 4305: 数列的GCD( 数论 )

    对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...

  5. bzoj 4305 数列的GCD

    LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], ...

  6. bzoj 2989: 数列

    LINK:数列 需要动一点脑子 考虑查询 暴力显然不行 考虑把绝对值拆开. 当x<=y ax<=ay时 有 y-x+ay-ax<=k x+ax>=y+ay-k 可以发现在满足前 ...

  7. BZOJ 2989: 数列/4170: 极光

    题解: n倍经验题 首先比较容易想到的是对绝对值分类讨论 然后是4维偏序 1.查询和修改顺序 2.x>y 3.a[x]>a[y] 4.(x+a[x])-(y+a[y])<=k 这样是 ...

  8. 解题:BZOJ 2989 数列

    题面 学习二进制分组 题目本身可以看成二维平面上的问题,转成切比雪夫距离后就是矩形和了 二进制分组是将每个修改添加到末尾,然后从后往前二进制下进位合并,这样最多同时有$\log n$组,每个修改只会被 ...

  9. BZOJ #2989. 数列 [树套树]

    考虑转化问题模型,这个没必要可持久化,直接加点就可以了,还不用删点 每次的问题是求 曼哈顿距离,变成切比雪夫距离然后求解 然后我们考虑将这玩意旋转 45度, 然后原坐标的 \((x,y)\) 会变成 ...

随机推荐

  1. Spring Boot JPA 使用 Sql Service 与 不使用默认驼峰策略

    引入 数据源 <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>s ...

  2. nethogs 按进程实时统计网络带宽利用率的工具

    安装 sudo apt-get install nethogs 使用 sudo nethogs

  3. Template、ItemsPanel、ItemContainerStyle、ItemTemplate (部分内容有待验证)

    以下摘自“CSDN”的某人博客,部分内容有待验证,需注意“辨别学之....” 1.Template是指控件的样式 在WPF中所有继承自contentcontrol类的控件都含有此属性,(继承自Fram ...

  4. puma(5300✨) Rails的一个多线程,高并发处理的web server

    https://github.com/puma/puma 在开发和产品环境下,Puma是一个简单,快速,多线程,并高并发highly concurrent HTTP1.1server for Ruby ...

  5. LeetCode 275. H-Index II

    275. H-Index II Add to List Description Submission Solutions Total Accepted: 42241 Total Submissions ...

  6. How to find per-process I/O statistics on Linux

    以下转自http://www.xaprb.com/blog/2009/08/23/how-to-find-per-process-io-statistics-on-linux/ Newer Linux ...

  7. day7-python类反射

    一.概述 一般的高阶语言都有反射的功能特性,python也不例外,网上资料显示,python支持类反射和模块反射,今天就先学习一下类反射的相关知识,模块反射后续再展开把.Python的类反射用于把字符 ...

  8. Oracle 常用系统包

    一.DBMS_OUTPUT(用于输入和输出信息) 二.DBMS_JOB(用于安排和管理作业队列) 三.dbms_pipe(类似UNIX系统的管道) 四.dbms_alert(用于生成并传递数据库预警信 ...

  9. LeetCode OJ : Different Ways to Add Parentheses(在不同位置增加括号的方法)

    Given a string of numbers and operators, return all possible results from computing all the differen ...

  10. L166

    THE idea of underwater mining is not restricted to the ocean floor (see article). High water tables ...