BZOJ1304 CQOI2009 叶子的染色


Description

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

Input

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

Output

仅一个数,即着色结点数的最小值。

Sample Input

5 3

0

1

0

1 4

2 5

4 5

3 5

Sample Output

2

HINT

M<=10000

N<=5021


探索一下性质,发现无论根在哪里对答案是没有影响的

然后就可以随便选定一个根,然后就做完了

转移的时候考虑当前放什么,在DP的时候如果子节点的颜色和当前点的颜色一样,当前点子节点是不用放的,所以在统计的时候–就好了

用dp[i][1/0]" role="presentation">dp[i][1/0]dp[i][1/0]表示以i为根的子树中,i染成1/0的最小染色数量


#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define INF 0x3f3f3f3f
struct Edge{int v,next;}E[N<<1];
int head[N],tot=0;
int f[N][2],c[N];
int n,m;
inline int read(){
int ans=0,w=1;char c=getchar();
while(!isdigit(c)&&c!='-')c=getchar();
if(c=='-')w=-1,c=getchar();
while(isdigit(c))ans=(ans<<1)+(ans<<3)+c-'0',c=getchar();
return ans*w;
}
inline void add(int u,int v){
E[++tot]=(Edge){v,head[u]};
head[u]=tot;
}
inline void dfs(int u,int fa){
if(u<=n){
f[u][c[u]]=1;
f[u][c[u]^1]=INF;
return;
}
f[u][0]=f[u][1]=1;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(v==fa)continue;
dfs(v,u);
f[u][0]+=min(f[v][1],f[v][0]-1);
f[u][1]+=min(f[v][0],f[v][1]-1);
}
}
int main(){
freopen("1304.in","r",stdin);
m=read();n=read();
for(int i=1;i<=n;i++)c[i]=read();
for(int i=1;i<m;i++){
int u=read(),v=read();
add(u,v);
add(v,u);
}
dfs(n+1,0);
printf("%d",min(f[n+1][0],f[n+1][1]));
return 0;
}

BZOJ1304 CQOI2009 叶子的染色 【树形DP】的更多相关文章

  1. BZOJ1304: [CQOI2009]叶子的染色 树形dp

    Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...

  2. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  3. BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  4. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  5. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  6. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  7. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  8. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  9. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

随机推荐

  1. Oracle函数中文转拼音(首字母)

    CREATE OR REPLACE FUNCTION FUN_GET_PYCODE(p_str IN VARCHAR2, p_flag NUMBER DEFAULT NULL) RETURN VARC ...

  2. js打乱数组的实战应用

    文章首发于: https://www.xiabingbao.com/post/javascript/js-random-array.html 在js中,能把数组随机打乱的方法有很多,每个方法都有自己的 ...

  3. 《高级Web应用程序设计》疑难杂症(201709011)

    (提供答案的同学,可获得加分小星星,每题1分,总分哦.) 1.DisplayColumn特性加在模型类上,它的用途是什么?

  4. 如何在Ubuntu Linux上安装Oracle Java

    不错文档,希望地址永久可用,url:http://zh.wikihow.com/%E5%9C%A8Ubuntu-Linux%E4%B8%8A%E5%AE%89%E8%A3%85Oracle-Java

  5. 设计模式--模板方法模式C++实现

    模板方法模式C++实现 1定义 定义一个操作的算法的框架,而将一些步骤延迟到子类中.使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤. 实现方案:将算法/逻辑框架放在抽象基类中,并定义好 ...

  6. php5权限控制修饰符,interface和abstract

    1.public:public表明该数据成员.成员函数是对所有用户开放的,所有用户都可以直接进行调用 2.private:private表示私有,私有的意思就是除了class自己之外,任何人都不可以直 ...

  7. [Java基础] 深入jar包:从jar包中读取资源文件

    转载: http://hxraid.iteye.com/blog/483115?page=3#comments 我们常常在代码中读取一些资源文件(比如图片,音乐,文本等等).在单独运行的时候这些简单的 ...

  8. (3) iOS开发之UI处理-UIView篇

    在UIView作为许多子控件的容器的时候,首先我们需要动态的计算出UIView下的所有子控件的高度,并布局排列好,然后我们还要把作为容器的UIView的高度调整到刚好包裹着所有子控件,不会过矮,也不会 ...

  9. 在Hibernate中使用原生SQL语句

    使用原生SQL查询必须注意:程序必须选出所有的数据列才可被转换成持久化实体.假设实体在映射时有一个<many-to-one../>的关联指向另外一个实体,则SQL查询中必须返回该<m ...

  10. LNMP的搭建与原理

    常见的web框架结构:例如:lnmp和:ampL=LINUX N=NGINX A=APACHE P=php T=Tomcat lnmp的原理 在LNMP组合工作时,首先是用户通过浏览器输入域名请求Ng ...