【1】 诊断的作用

【2】过拟合

【3】

【4】

高偏差bias,欠拟合underfitting

高方差variance,过拟合overfitting

【5】参数λ

Answer:  λ太大,则参数都被惩罚,导致欠拟合,两个J都大。  λ太小,则欠拟合,Jtrain 小,Jcv大。

【6】

Answer:过拟合的时候,增加训练集有用。

【7】

Answer:过拟合,增加 hidden 层数无用。

-------------------------------------- 下面是Lecture 11 的内容

【8】

Answer:

A 正确。不容易猜测哪个feature是最有用的

B 错误。是一种方法,significant improve 不一定

C 错误。 是一种方法,always be good 不一定

D 正确。gut feeling直觉,不推荐只根据直觉判断。

【9】Jtest 和 Jcv

【10】错误度量

Answer: Precision = 80/(20+80) = 0.8,  Recall = 80/(80+80) = 0.5

【11】 F1 score

【12】大数据集

Answer:如果数据所含的信息很少,增大数据集也不能解决问题。


测验

Answer:第一个欠拟合,两个误差都大。第二个过拟合,train小,cv大。

Answer:BC,过拟合:使用小的特征集, 增大λ。

Answer:AB,欠拟合:增大特征集, 增加多项式次数,减小λ。

Answer:AD

Answer:ABCF

A 高偏差,欠拟合说明模型不好,应该增加feature

C 参数过多,更容易过拟合

D 错误。增加 hidden 数,不能解决过拟合

E 错误。欠拟合,通过增加feature可以优化

F 过拟合,通过增加训练集可以优化

--------------- 下面是Lecture11 的内容

Answer: recall=85/(85+15)=0.85

Answer: BD

A 错误。如果features太少,多加入polynomial features 也不能够完全模拟出训练样本的特征。就像预测房价,只用房子面积这一个特征,再加上面积1次方,2次方组成的polynomial,就算训练样本再多,也不能预测出正确的房价
B 正确 给专家一个x feature就可以准确的预测出y. 即所选的特征x含有足够的信息来准确预测y
C

D 正确。我们的学习算法能够表示相当复杂的功能(例如,训练神经网络或其他具有大量参数的模型)。模型复杂,表示复杂的函数,此时的特征多项式可能比较多,能够很好的拟合训练集中的数据,使用大量的数据能够很好的训练模型。

Answer:D

threshould 设定越低,查准率precision越低、查全率recall越高,因为更多负例被判断为正例。

threshould 设定越高,查准率precision越高、查全率recall越低,因为有更多正例被漏掉。

Answer:ACDFG

  • Accuracy = (true positives + true negatives) / (total examples)
  • Precision = (true positives) / (true positives + false positives)
  • Recall = (true positives) / (true positives + false negatives)
  • F1​ score = (2 * precision * recall) / (precision + recall)

A 正确。好的模型应该同时具有较高的precision和recall

B 错误。表现应该类似

C 正确。如果都判断为非垃圾邮件,recall=0/(0+99)=0,precision=0/(0+1)=0,accurancy=(0+99)/100 = 0.99

D 正确。交叉验证集合和训练集来源相同,表现应该类似。

E 错误。如果都判断为垃圾邮件,recall=1/(1+0)=1,precision=1/(99+1)=0.01

F 正确。同C

G 正确。同E

Answer:DEF

A 错误。不应该开始就花大量时间去收集大量数据,而应该有重点地收集有用数据

B 错误。模型欠拟合,多收集数据没有帮助。如果模型太简单、特征太少,则应该增加多项式特征,而不是收集数据

C 错误。因为可能存在偏斜数据集,最终阈值不一定是0.5

D 正确。手动检查分类错误的数据会有帮助

E 正确。使用特别大的数据集合能避免过拟合

F 正确。在很偏斜的数据集上,应该使用F1 值,而不是使用accuracy

【原】Coursera—Andrew Ng机器学习—Week 6 习题—Advice for applying machine learning的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  2. 【原】Coursera—Andrew Ng机器学习—Week 11 习题—Photo OCR

    [1]机器学习管道 [2]滑动窗口 Answer:C ((200-20)/4)2 = 2025 [3]人工数据 [4]标记数据 Answer:B (10000-1000)*10 /(8*60*60) ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning

    课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归

    课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 10 习题—大规模机器学习

    [1]大规模数据 [2]随机梯度下降 [3]小批量梯度下降 [4]随机梯度下降的收敛 Answer:BD A 错误.学习率太小,算法容易很慢 B 正确.学习率小,效果更好 C 错误.应该是确定阈值吧 ...

  6. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  7. 【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维

    [1]无监督算法 [2]聚类 [3]代价函数 [4] [5]K的选择 [6]降维 Answer:本来是 n 维,降维之后变成 k 维(k ≤ n) [7] [8] Answer: 斜率-1 [9] A ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM

    [1] [2] Answer: B. 即 x1=3这条垂直线. [3] Answer: B 因为要尽可能小.对B,右侧红叉,有1/2 * 2  = 1 ≥ 1,左侧圆圈,有1/2 * -2  = -1 ...

  9. 【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

随机推荐

  1. maven的介绍以及使用

    maven的介绍以及使用 1.什么是maven maven是一个项目管理工具,一个依赖管理系统,maven通过项目对象模型来管理jar包(POM.xml文件) 2.maven的优点 1.maven使用 ...

  2. (C#)if (this == null)?你在逗我,this 怎么可能为 null!用 IL 编译和反编译看穿一切

    if (this == null) Console.WriteLine("this is null"); 这句话一写,大家一定觉得荒谬,然而 if 内代码的执行却是可能的!本文讲介 ...

  3. WPF/UWP 绑定中的 UpdateSourceTrigger

    在开发 markdown-mail 时遇到了一些诡异的情况.代码是这么写的: <TextBox Text="{Binding Text, Mode=TwoWay}"/> ...

  4. Django 向数据表中添加字段方法

    在模型order中添加字段discount字段,并给予初始值0 方法: 先在models.py中修改模型 添加 discount = models.DecimalField(max_digits=8, ...

  5. 静态分析工具PMD使用说明

    质量是衡量一个软件是否成功的关键要素.而对于商业软件系统,尤其是企业应用软件系统来说,除了软件运行质量.文档质量以外,代码的质量也是非常重要的.软件开发进行到编码阶段的时候,最大的风险就在于如何保证代 ...

  6. java创建多线程&创建进程

    概述 并发和并行是即相似又有区别: 并行:指两个或多个事件在同一时刻发生: 并发:指两个或多个事件在同一时间段内发生. 进程是指一个内存中运行中的应用程序.每个进程都有自己独立的一块内存空间,一个应用 ...

  7. .NET平台上的Model-View-Presenter模式实践

    为什么要写这篇文章 笔者当前正在负责研究所中一个项目,这个项目基于.NET平台,初步拟采用C/S部署体系,所以选择了Windows Forms作为其UI.经过几此迭代,我们发现了一个问题:虽然业务逻辑 ...

  8. Ubuntu 破解密码及用户管理

    Ubuntu 破解密码及用户管理 ubuntu 16.04 破解密码 useradd 实现以下要求 1.ubuntu16.04破解密码 2.创建下面的用户.组和组成员关系 名字为xipudata 的组 ...

  9. Linux之 手动释放内存

    我们在进程中要怎样去描述一个文件呢?我们用目录项(dentry)和索引节点(inode).它们的定义如下: 所谓"文件", 就是按一定的形式存储在介质上的信息,所以一个文件其实包含 ...

  10. Android Activity活动状态及生存周期

    1.活动状态 每个活动在其生命周期中最多可能会有4中状态. (1)运行状态 当一个活动位于返回栈的栈顶时,此时活动就处于运行状态.系统不会回收处于运行状态的活动. (2)暂停状态 当一个活动不再处于栈 ...