[吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机
觉得有用的话,欢迎一起讨论相互学习~Follow Me
参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广
12.3 大间距分类背后的数学原理- Mathematics Behind Large Margin classification
向量内积
- 假设有两个向量\(u=\begin{bmatrix}u_1\\u_2\\ \end{bmatrix}\),向量\(v=\begin{bmatrix}v_1\\v_2\\ \end{bmatrix}\),其中向量的内积表示为\(u^Tv\).假设\(u_1\)表示为u在坐标轴横轴上的投影,而\(u_2\)表示为u在坐标轴纵轴上的投影,则向量u的欧几里得长度可表示为\(\parallel u \parallel\) , 且有\(\parallel u \parallel=\sqrt{u_1^{2}+u_2^{2}}\)

对于向量的内积\(u^{T}v\) ,可以视为 v向量在u向量上的投影p乘以u向量的长度,这两者都为实数,且当v向量的投影与u向量同方向时,p取正号,否则p取负号 即有式子 \[u^{T}v=P * \parallel u \parallel=u_1v_1+u_2v_2\]

向量内积研究SVM目标函数

- 为了更容易分析问题只保留了损失函数的后半部分而去掉了C及其乘积项。 ,原始损失函数如下图:

- 为简化起见,忽略掉截距,设置损失函数中参数\(\theta_0\)为0,设置特征数n=2. ,则简化后的式子可写为:

因此可以认为SVM的目的就是最小化向量\(\theta\) 范数的平方或者说是长度的平方
\(\theta^{T}x\)的意义
- 给定参数向量 θ 给定一个样本x, 计算其二者的乘积,这其中的含义是什么? 对于\(\theta^{T}x\)其相当于向量内积\(u^{T}v\)


- 首先,对于训练样本\(x^{(i)}\),其在x轴上的取值为\(x^{(i)}_{1}\),其在y轴上的取值为\(x^{(i)}_{2}\) ,此时 将其视为始于原点,终点位于训练样本的向量
- 然后将参数 \(\theta\) 也视为向量且其在横轴上的投影为 \(\theta_1\) ,其在纵轴上的投影为 \(\theta_2\)
- 使用之前的方法,将训练样本投影到参数向量 θ,使用 \(p_{(i)}\)来表示第 i 个训练样本在参数向量\(\theta\)上的投影。 即有 \[\theta^{T}x^{(i)}=p_{(i)}\parallel \theta\ \parallel=\theta_1x_1^{(i)}+\theta_2x_2^{(i)}\]

\(x_{(i)}\)代表从原点出发连接到第i个样本点的向量,是可正可负的,分别表示正样本和负样本;\(p^{(i)}\)表示样本向量\(x_{(i)}\)到参数向量\(\theta\)上的投影,其也是可正可负的,同方向为正负方向为负 ,对于SVM中\(\theta^{T}x^{(i)}\ge1或者\theta^{T}x^{(i)}\le-1\)的约束也可以被 \(p^{(i)}x\ge1\)这个约束所代替
从\(\theta^{T}x\)到大间距
- 首先为方便起见设置 \(\theta_0=0\) ,且只选取两个特征,即\(\theta_1 和 \theta_2\) ,则参数\(\theta\) 可以表示成一条过原点的直线,且 决策界 与\(\theta\)直线垂直。
- 反证法 如下图所示(1),y轴右边的表示正样本,而y轴左边的表示负样本,蓝线表示参数\(\theta\),绿线表示决策界 ,很明显这条决策界很不好,因为其与正负样本的间距太小了。 通过将样本投影到\(\theta\)上可以得到p,此时正负样本的||p||都很小,根据SVM的公式||p|| * ||\(\theta\)||>=1,则其必须使||\(\theta\)||很大才能满足条件,这和目标函数希望找到一个小的参数\(\theta\)的目的是矛盾的,这表明这并不是一条好的决策界
- 而图(2)中x在\(\theta\)的投影p就相对的大一些,这样在满足公式\(||p|| * ||\theta||>=1\)需要的||\(\theta\)||就会小一些,这和SVM的优化目标是一致的。所以 好的SVM的优化结果中,决策界的间距一定比较大

[吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释的更多相关文章
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- [吴恩达机器学习笔记]12支持向量机6SVM总结
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.6SVM总结 推荐使用成熟的软件包 用以解决 SVM 最优化问题的软件很复杂,且已经有研究者做了很多年数值优化.因此强烈 ...
- [吴恩达机器学习笔记]12支持向量机4核函数和标记点kernels and landmark
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.4 核函数与标记点- Kernels and landmarks 问题引入 如果你有以下的训练集,然后想去拟合其能够分开 ...
- 吴恩达机器学习103:SVM之大间隔分类器的数学原理
1.向量内积: (1)假设有u和v这两个二维向量:,接下来看一下u的转置乘以v的结果,u的转置乘以v也叫做向量u和向量v的内积,u是一个二维向量,可以将其在图上画出来,如下图所示向量u: 在横轴上它的 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- 吴恩达机器学习笔记45-使用支持向量机(Using A SVM)
本篇我们讨论如何运行或者运用SVM. 在高斯核函数之外我们还有其他一些选择,如:多项式核函数(Polynomial Kernel)字符串核函数(String kernel)卡方核函数( chi-squ ...
随机推荐
- 多源最短路——Floyd算法
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...
- “我爱淘”第二冲刺阶段Scrum站立会议4
完成任务: 完成了首页中的推荐功能,推荐的是最近添加的需要卖的书,注册功能实现了它,可以对数据库进行添加. 计划任务: 在客户端实现分类功能,通过学院的分类查看书籍. 遇到问题: 分类功能,根据不同学 ...
- iframe高度自适应的6个方法
原文链接:http://caibaojian.com/iframe-adjust-content-height.html JS自适应高度,其实就是设置iframe的高度,使其等于内嵌网页的高度,从而看 ...
- web.config详解(转载)
该文为转载 原文地址:http://www.cnblogs.com/gaoweipeng/archive/2009/05/17/1458762.html 花了点时间整理了一下ASP.NET Web.c ...
- C#中委托的理解
请注意,这只是个人关于C#中委托的一点点理解,参考了一些博客,如有不周之处,请指出,谢谢! 委托是一种函数指针,委托是方法的抽象,方法是委托的实例.委托是C#语言的一道坎,明白了委托才能算是C#真正入 ...
- C#高级编程 (第六版) 学习 第三章:对象和类型
第三章 对象和类型 1,类和结构 类存储在托管堆上 结构存储在堆栈上 2,类成员 类中的数据和函数称为类成员 数据成员 数据成员包括了字段.常量和事件 函数成员 方法:与某个类相关的函数,可以 ...
- exce族函数详解
exec函数族 函数族说明 fork() 函数用于创建一个新的子进程,该子进程几乎复制了父进程的全部内容,但是,这个新创建的子进程如何执行呢?exec 函数族就提供了一个在进程中启动另一个程序执行的方 ...
- @Resource 注解的作用【和 @Autowired 的对比】
今天看到一段代码使用的是 @Resource 的注解,的确是第一次看到这个注解,百度一查才知道,原来和 @Autowired 效果一样,但也有一定的区别. 两个注解都可以用来注入 bean ,@Res ...
- Shell逐行读取文件的3种方法
方法1:while循环中执行效率最高,最常用的方法. while read linedoecho $linedone < filename 注释:这种方式在结束的时候需要执行文件,就好像是执行 ...
- UVA11735_Corner the Queens
题目是这样的,游戏规则,每个人轮流将二维空间上的皇后往下,往左或者往斜下45度的方向移动. 谁第一个移动到0,0的位置就获胜. 题目给定你若干个矩形,求矩形中任取一点且该点必胜的概率有概率. 其实是这 ...