bzoj 3209 bzoj1799 数位dp
3209: 花神的数论题
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2267 Solved: 1040
[Submit][Status][Discuss]
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
3
Sample Output
2
HINT
对于样例一,1*1*2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
// 数位dp模板题 10^15最多52个1,枚举1的个数来统计就行了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const ll mod=1e7+;
int bit[],maxv;
ll dp[][];
ll pow_mod(ll a,ll b)
{
if(b==) return ;
ll x=pow_mod(a,b/);
ll ans=x*x%mod;
if(b&) ans=ans*a%mod;
return ans;
}
ll dfs(int pos,int x,int limt)
{
if(pos<=) return x==maxv;
if(!limt&&dp[pos][x]!=-) return dp[pos][x];
ll ans=;
int maxb=(limt?bit[pos]:);
for(int i=;i<=maxb;i++){
ans+=dfs(pos-,x+i,limt&&(i==maxb));
}
if(!limt) dp[pos][x]=ans;
return ans;
}
void solve(ll n)
{
int nu=;
while(n){
bit[++nu]=(n&);
n>>=;
}
ll ans=;
for(int i=;i<=nu;i++){
memset(dp,-,sizeof(dp));
maxv=i;
ll tmp=dfs(nu,,);
ans=ans*pow_mod(i,tmp)%mod;
}
printf("%lld\n",ans);
}
int main()
{
ll n;
scanf("%lld",&n);
solve(n);
return ;
}
1799: [Ahoi2009]self 同类分布
Time Limit: 50 Sec Memory Limit: 64 MB
Submit: 1245 Solved: 535
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
【约束条件】1 ≤ a ≤ b ≤ 10^18
//数位dp模板题 10^18的数数位和最大是153,然后枚举数位和然后就行了。刚开始还傻到想要求前153个数的lcm。。。。
//dfs时记录余数pre 和数位和sum。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll dp[][][],po[];
int bit[];
ll dfs(int pos,int mod,int sum,int pre,bool w){
if(pos<=) return pre==&&sum==mod;
if(!w&&dp[pos][sum][pre]!=-) return dp[pos][sum][pre];
ll ans=;
int maxb=(w?bit[pos]:);
for(int i=;i<=maxb;i++){
ans+=dfs(pos-,mod,sum+i,(pre+i*po[pos])%mod,w&&(i==maxb));
}
if(!w) dp[pos][sum][pre]=ans;
return ans;
}
ll solve(ll x)
{
int nu=;
while(x){
bit[++nu]=x%;
x/=;
}
ll ans=;
for(int mod=;mod<=nu*;mod++){
memset(dp,-,sizeof(dp));
ans+=dfs(nu,mod,,,);
}
return ans;
}
int main()
{
po[]=;
for(int i=;i<=;i++) po[i]=po[i-]*1LL*;
ll a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",solve(b)-solve(a-));
return ;
}
bzoj 3209 bzoj1799 数位dp的更多相关文章
- BZOJ 3329: Xorequ [数位DP 矩阵乘法]
3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...
- BZOJ.3329.Xorequ(数位DP)
题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...
- BZOJ 3329 - Xorequ - 数位DP, 矩乘
Solution 发现 $x \ xor \ 2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...
- BZOJ 3329 Xorequ (数位DP、矩阵乘法)
手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...
- BZOJ 3329: Xorequ(数位dp+递推)
传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- bzoj 3209 花神的数论题——二进制下的数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
随机推荐
- JAVA学习笔记--字符串概述
一.String类 String类代表字符串,是由字符构成的一个序列.创建String对象的方法很简单,有以下几种: 1)用new来创建: String s1 = new String("m ...
- Python-2.7 配置tab自动补全功能
作者博文地址:http://www.cnblogs.com/spiritman/ 之前一直使用shell编程,习惯了shell的 tab 自动补全功能,而Python的命令行却不支持 tab 自动补全 ...
- python单元测试之参数化
paramunittest下载地址:https://pypi.python.org/pypi/ParamUnittest/ 当然我们也可以通过pip install paramunittest方式进行 ...
- float精度丢失的问题
在做IPTV的时候,遇到以下这个问题: 现有一个float型数据,以下代码打印输出: float n = 40272.48f; System.out.println(new Double(n * 10 ...
- Jquery mobile div常用属性
组件 页面 jQuery Mobile 应用了 HTML5 标准的特性,在结构化的页面中完整的页面结构分为 header. content.footer 这三个主要区域. 在 body 中插入内容块: ...
- int 和Integer
Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入不是对象的基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrappe ...
- QJsonDocument实现Qt下JSON文档读写
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QJsonDocument实现Qt下JSON文档读写 本文地址:http://tech ...
- jar读取外部和内部配置文件的问题
最近修改XX应用的时候,涉及到需要在jar包中读取工程配置文件的问题.在jar包中,读取配置文件,需要单独处理. 项目中的一些配置文件,如dbconfig.properties log4j.xml 不 ...
- 使用java程序模拟页面发送http的post请求
在web应用程序中,一般都是通过页面发送http的post请求,但也可以使用java程序来模拟页面发送请求,代码如下: import java.io.BufferedReader; import ja ...
- ThinkPHP的调用css,js和图片的路径
按网上的说法,在根目录下建了一个Public目录,把css,js和图片放到Public目录下,然后用__PUBLIC__/...或__ROOT__/Public/...调用.但是发现无论如何改路径都无 ...