题面

sol:说了是线段树优化建图的模板。。。

就是把一整个区间的点连到一个点上,然后用那个点来连需要连一整个区间的点就可以了,就把边的条数优化成n*log(n)了

#include <queue>
#include <cstdio>
#include <iostream>
using namespace std;
const int N=,M=;
int n,s,m,tot=,Next[M],to[M],val[M],head[M],cnt=,in1[N],dis[N],a[N],arr[N];
inline void add(int x,int y,int z){Next[++tot]=head[x];to[tot]=y;val[tot]=z;head[x]=tot;in1[y]++;}
struct segtree{int l,r,num;inline int mid(){return (l+r)>>;}}Tree[N<<];
#define c1 x<<1
#define c2 x<<1|1
inline void build(int l,int r,int x)
{
Tree[x].l=l;Tree[x].r=r; if(l==r){Tree[x].num=l;return;} Tree[x].num=++cnt; int mid=(l+r)>>;
build(l,mid,c1); build(mid+,r,c2); add(Tree[c1].num,Tree[x].num,); add(Tree[c2].num,Tree[x].num,);
}
inline void ins(int l,int r,int x,int v)
{
if(Tree[x].l==l&&Tree[x].r==r){add(Tree[x].num,v,);return;} int mid=Tree[x].mid();
if(r<=mid)ins(l,r,c1,v);else if(l>mid)ins(l,r,c2,v);else ins(l,mid,c1,v),ins(mid+,r,c2,v);
}
inline bool Kahn()
{
int i,x; queue<int>q; for(i=;i<=cnt;i++){if(!in1[i])q.push(i);if(!dis[i])dis[i]=;arr[i]=;}
while(!q.empty())
{
x=q.front(); q.pop(); arr[x]=;
for(i=head[x];i;i=Next[i])
{
dis[to[i]]=max(dis[to[i]],dis[x]+val[i]); if(a[to[i]]&&dis[to[i]]>a[to[i]]){printf("NIE\n");return ;} if(!--in1[to[i]])q.push(to[i]);
}
}for(i=;i<=cnt;i++)if(!arr[i]||dis[i]>){printf("NIE\n");return ;} return ;
}
int main()
{
int i,j,x,y,l,r,k,pre; scanf("%d%d%d",&n,&s,&m); cnt=n; build(,n,); for(i=;i<=s;i++){scanf("%d%d",&x,&y);a[x]=dis[x]=y;}
for(i=;i<=m;i++)
{
scanf("%d%d%d",&l,&r,&k); pre=l-; cnt++;
for(j=;j<=k;j++)
{
scanf("%d",&x); add(cnt,x,); if(x>pre+)ins(pre+,x-,,cnt); pre=x;
}if(x<r)ins(x+,r,,cnt);
}if(!Kahn())return ; printf("TAK\n"); for(i=;i<=n;i++)printf("%d ",dis[i]);printf("\n");
}

洛谷P3588 [POI2015]PUS的更多相关文章

  1. 洛谷P3588 [POI2015]PUS(线段树优化建图)

    题面 传送门 题解 先考虑暴力怎么做,我们把所有\(r-l+1-k\)中的点向\(x\)连有向边,表示\(x\)必须比它们大,那么如果这张图有环显然就无解了,否则的话我们跑一个多源最短路,每个点的\( ...

  2. 洛谷P3588 - [POI2015]Pustynia

    Portal Description 给定一个长度为\(n(n\leq10^5)\)的正整数序列\(\{a_n\}\),每个数都在\([1,10^9]\)范围内,告诉你其中\(s\)个数,并给出\(m ...

  3. P3588 [POI2015]PUS(拓扑排序+线段树)

    P3588 [POI2015]PUS 对于每个$(l,r,k)$,将$k$个位置向剩下$r-l-k+1$个位置连边,边权为$1$,这样就保证$k$个位置比剩下的大 先给所有位置填$1e9$保证最优 然 ...

  4. 洛谷P3582 [POI2015]KIN

    题目描述 共有\(m\)部电影,编号为\(1--m\),第\(i\)部电影的好看值为\(w[i]\).在\(n\)天之中(从\(1~n\)编号)每天会放映一部电影,第\(i\)天放映的是第\(f[i] ...

  5. BZOJ 4385 洛谷3594 POI2015 WIL-Wilcze doły

    [题解] 手残写错调了好久QAQ...... 洛谷的数据似乎比较水.. n个正整数!!这很重要 这道题是个类似two pointer的思想,外加一个单调队列维护当前区间内长度为d的子序列中元素之和的最 ...

  6. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  7. 洛谷 P3585 [POI2015]PIE

    P3585 [POI2015]PIE 题目描述 一张n*m的方格纸,有些格子需要印成黑色,剩下的格子需要保留白色.你有一个a*b的印章,有些格子是凸起(会沾上墨水)的.你需要判断能否用这个印章印出纸上 ...

  8. 洛谷P3586 [POI2015]LOG(贪心 权值线段树)

    题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...

  9. 洛谷P3585 [POI2015]PIE

    传送门 题目大意:有个n*m的格子图,要求'x'点要被染成黑色 有个a*b的印章,'x'是可以染色的印章上的点. 要求用印章去染色格子 (1)印章不可以旋转. (2)不能把墨水印到纸外面. (3)纸上 ...

随机推荐

  1. 初级算法-6.两个数组的交集 II

    题目描述: 给定两个数组,编写一个函数来计算它们的交集. 示例 : 输入: nums1 = [,,,], nums2 = [,] 输出: [,] 示例 : 输入: nums1 = [,,], nums ...

  2. 扫描Linux服务器查找恶意软件和rootkit的一款工具

    官网参考官网安装教程:wget https://www.clamav.net/downloads/production/clamav-0.101.1.tar.gztar -zxvf clamav-0. ...

  3. 走近SpringBoot

    (博客园不支持MarkDown编辑,看完整版请移步:https://www.zybuluo.com/Allen-llh/note/1199946) 1. (Building a RESTful Web ...

  4. Ionic App之国际化(2) json数组的处理

    在Ionic App值国际化(1)中我们实现了对单个参数的多语言处理,下面开始如何进行数组的处理. 1.在我们的多语言文件中设置要访问的json数组,en.json和zh.json,此处就以en.js ...

  5. Luogu P2482 [SDOI2010]猪国杀

    这道题在模拟界地位不亚于Luogu P4604 [WC2017]挑战在卡常界的地位了吧. 早上到机房开始写,中间因为有模拟赛一直到1点过才正式开始码. 一边膜拜CXR dalao一边写到3点左右,然后 ...

  6. EZ 2018 06 17 NOIP2018 模拟赛(十九)

    这次的题目难得的水,但是由于许多哲学的原因,第二题题意表述很迷. 然后是真的猜题意了搞了. 不过这样都可以涨Rating我也是服了. Upt:链接莫名又消失了 A. 「NOIP2017模拟赛11.03 ...

  7. Part 6:静态文件--Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 前面我们编写了一个经过测试的投票应用,现在让 ...

  8. “论 ofo 是如何影响今日头条发展的”

    近段时间, ofo 小黄车押金难退的消息频频曝出.尽管 OFO 已经宣布押金只能在线上退还,但是线上退押金也难,因此很多的用户还是选择到 ofo 北京总部“要个说法”.记者昨天在现场发现,位于北京中关 ...

  9. 为小米(红米)6A解锁_ROOT_安装天下游虚拟定位教程_已亲身验证通过!附图

    第一步骤: 把TeamViewer发给客户 第二步骤: 在自己电脑上购买小米账号:http://shop1.91kami.com/UXWHTEY9KN?cid=1200 要求:(购买邮箱注册账号,需要 ...

  10. 北航MOOC客户端

    我们的团队作业终于完成了,欢迎下载使用我们的北航MOOC手机客户端软件(Android端)——北航学堂,学习北航的公开课程. 安装包下载地址: http://pan.baidu.com/s/1jGvH ...