LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面
题面有点难看。。。请认真阅读理解题意。
转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变成 \(\displaystyle \lfloor \frac{N}{k} \rfloor\) ,到 \(1\) 停止。
求一共有多少不同的操作序列,也就是操作次数不一样或者某次操作的 \(k\) 不相同。
题解
首先考虑 dp ,令 \(f_i\) 为以 \(i\) 为开头的不同操作序列数。
显然有一个转移:
\]
边界为 \(f_1 = 1\) 。
显然这个式子能用整除分块来进行优化,就是对于 \(\displaystyle \lfloor \frac{i}{k} \rfloor\) 相同一起处理,很容易发现这些 \(f_{\lfloor \frac{i}{k} \rfloor}\) 也是相同的。
这是因为
\[\lfloor \frac{\lfloor \frac{n}{x} \rfloor } y \rfloor = \lfloor \frac{n}{xy} \rfloor
\]证明是很显然的。
所以有用的 \(f\) 总共只有 \(\sqrt N\) 个。
那么我们记忆化搜索即可,然后用一些对于这个利用整除分块的常用标号的方式。
也就是 \(x< \sqrt N\) 用 \(x\) , \(x \ge \sqrt N\) 用 \(\displaystyle \lfloor \frac{N}{x} \rfloor\) 。
不断递归下去就行了,深度是 \(\log N\) 的。
然后复杂度?不会证。这是个整除分块套整除分块。。
著名 OI 选手 zhou888 口胡证明是 \(O(N ^ \frac{3}{4})\) 的。
总结
要相信分块套起来的复杂度,然后记忆化的时候最好手写哈希,或者用一些特殊性质,常数能小很多。
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("2802.in", "r", stdin);
freopen ("2802.out", "w", stdout);
#endif
}
typedef long long ll;
const int Maxn = 1e6 + 1e3;
int n; ll Ans1[Maxn], Ans2[Maxn];
inline void Insert(int pos, ll uv) {
if (pos < Maxn) Ans1[pos] = uv; else Ans2[n / pos] = uv;
}
inline ll Find(int pos) {
return pos < Maxn ? Ans1[pos] : Ans2[n / pos];
}
ll Dp(int val) {
if (val == 1) return 1;
ll res = Find(val); if (res) return res;
for (register int i = 2, Nexti; i <= val; i = Nexti + 1)
Nexti = val / (val / i), res += Dp(val / i) * (Nexti - i + 1);
Insert(val, res); return res;
}
int main () {
File();
n = read();
printf ("%lld\n", Dp(n));
return 0;
}
LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)的更多相关文章
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- loj 2778「BalticOI 2018」基因工程
loj luogu 这题和NOI那道向量内积一个套路 首先考虑求两行的不同元素个数,可以转化成一个行向量\(a\)和列向量\(b\)相乘得到一个值.如果只有\(A,C\)两种字符,那么令对应权值\(A ...
- 2018.10.27 loj#2292. 「THUSC 2016」成绩单(区间dp)
传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j] ...
- LOJ#2799. 「CCC 2016」生命之环
题意 给你一个 \(n\) 个 \(\rm 01\) 组成的环,每次操作之后每个位置为1当且仅当他的左右恰好有1个1.输出进行 \(T\) 次操作之后的环. \(n\leq 10^5, T\leq 1 ...
- LOJ#2351. 「JOI 2018 Final」毒蛇越狱
LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...
随机推荐
- Matplotlib 简单图例
图例参考:http://matplotlib.org/gallery.html API参考:http://matplotlib.org/api/pyplot_summary.html # -*- co ...
- UOJ400/LOJ2553 CTSC2018 暴力写挂 边分治、虚树
传送门--UOJ 传送门--LOJ 跟隔壁通道是一个类型的 要求的式子中有两个LCA,不是很方便,因为事实上在这种题目中LCA一般都是枚举的对象-- 第二棵树上的LCA显然是动不了的,因为没有其他的量 ...
- 通过C# WinForm控件创建的WPF WIndow窗口控件无法输入的问题
原文:通过WinForm控件创建的WPF 控件无法输入的问题 今天把写的一个WPF程序发布到别的机器上执行,发现一个比较奇怪的问题:在那个机器上用英文输入法无法输入数字,非要切换到中文输入法才行:但在 ...
- 利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe)
原文:利用Costura.Fody制作绿色单文件程序(C#程序(含多个Dll)合并成一个Exe) 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了.这 ...
- 系统引导修复,grub2下的各种骚作
新买的xps装了一个rhel7.5,各种恶心... 第一次:升级内核之后居然引导不了! 进入bios setup,把bios 引导的文件选择为 grub64.eif,成功进入系统 第二次:升级grub ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- Linux内核分析第四章 读书笔记
Linux内核分析第四章 读书笔记 第一部分--进程调度 进程调度:操作系统规定下的进程选取模式 面临问题:多任务选择问题 多任务操作系统就是能同时并发地交互执行多个进程的操作系统,在单处理器机器上这 ...
- PolarCode
什么是polar code极化码 为了实现可靠的信号传输,编码学家在过去的半个多世纪提出多种纠错码技术如里所码(RS码).卷积码,Turbo码等,并在各种通信系统中取得了广泛的应用.但是以往所有实用的 ...
- java中定时执行任务
现在项目中用到需要定时去检查文件是否更新的功能.timer正好用于此处. 用法很简单,new一个timer,然后写一个timertask的子类即可. 代码如下: package comz.autoup ...