Exercise 4: Logistic Regression and Newton’s Method

回顾一下线性回归
hθ(x)=θTx

Logistic Regression
hθ(x)=11+e−θTx=p{y=1|x;θ}

cost(hθ(x),y)的选择
cost(hθ(x),y)=−loghθ(x) (y=1)
选择对数似然损失函数作为逻辑回归的Cost Function 原因是这个cost函数是凸函数,具有碗状的形状,而凸函数具有良好的性质:对
于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值点。
当hθ(x)=1的时候cost =0 反之cost=+∞
同理,cost(hθ(x),y)=−log(1−hθ(x)) (y=0)
当hθ(x)=0的时候cost =0 反之cost=+∞

in summarize

cost(hθ(x),y)=−y loghθ(x)−(1−y)log(1−hθ(x)) (y=1 or 0)
J(θ)=1mcost(hθ(x(i)),y(i))
J(θ)=−1m∑i=1m[y loghθ(x)+(1−y)log(1−hθ(x))]

牛顿迭代法

xn+1=xn−f′(xn)f′′(xn)

decision boundary

hθ(x)=1−g(θTx)=0.5
θ0+θ1x1+θ2x2=0
x2=−1θ2(θ0+θ1x1)
plot_y=−1θ2(θ0+θ1X)

预测不被admitted的概率

prob=1−g(θTx)
for i=1:MAX_ITR
z=x*theta;
h=g(z);
deltaJ= (1/m).* x' * (h - y);
Hessian=(1/m).*x'* diag(h) * diag(1-h) * x;
J(i)= (1/m) * sum (-y.*log(h) - (1-y).*log(1-h) );
theta = theta - Hessian \ deltaJ;
end

关键的地方是 Hessian矩阵的求法:
Ng的课程讲到

H=1m∑i=1m[h(x(i))R(1−h(x(i)))R∗(x(i))∗(x(i))T]

后面的则是

R(n+1)×1∗R1×(n+1)

h(x(i))是向量,因此在矩阵运算的时候,将向量表示成对角矩阵。

diag(h)∗diag(1−h)

本文完

斯坦福机器学习课程 Exercise 习题四的更多相关文章

  1. 斯坦福机器学习课程 Exercise 习题三

    Exercise 3: Multivariate Linear Regression 预处理数据 Preprocessing the inputs will significantly increas ...

  2. 斯坦福机器学习课程 Exercise 习题二

    Exercise 2: Linear Regression 话说LaTex用起来好爽 Matlab代码 迭代并且画出拟合曲线 Linear regression 公式如下 hθ(x)=θTx=∑i=0 ...

  3. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  4. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  5. 【原】Coursera—Andrew Ng斯坦福机器学习(0)——课程地址和软件下载

    斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提 ...

  6. cs229 斯坦福机器学习笔记(一)-- 入门与LR模型

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...

  7. CS229 机器学习课程复习材料-线性代数

    本文是斯坦福大学CS 229机器学习课程的基础材料,原始文件下载 原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代 ...

  8. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  9. 斯坦福大学自然语言处理第四课“语言模型(Language Modeling)”

    http://52opencourse.com/111/斯坦福大学自然语言处理第四课-语言模型(language-modeling) 一.课程介绍 斯坦福大学于2012年3月在Coursera启动了在 ...

随机推荐

  1. Android Studio [登陆界面]

    EdittextActivity.class package com.xdw.a122; import android.support.v7.app.AppCompatActivity; import ...

  2. Graphlab create的基本使用

    写在前面 GraphLab Create 是一款机器学习的函数库,其中的SFrame也是十分强大的数据管理工具.它允许直接从硬盘中读取数据,免于将数据全部加载到内存中.这就使得对于大数据的处理成为可能 ...

  3. opencv边缘检测-拉普拉斯算子

    sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这 ...

  4. 005-做题:使用 Python 生成 200 个激活码

    题目:使用 Python 生成 200 个不重复的激活码 编写思路# 激活码一般是由26个大写字母和10个数字任意组合而成# 长度为12位或者16位的居多激活码# 一个激活码里的字符是可以重复的,而且 ...

  5. Windows和Mac系统下安装Docker

    在windows和mac系统中使用Docker Desktop安装Docker对系统的要求是很高的. 对于 Windows 系统来说,安装 Docker for Windows 需要符合以下条件: 必 ...

  6. 鱼和熊掌可兼得?一文看懂又拍云 SCDN

    转眼已是 9102 年,参与工作多年的二狗子凭借他聪明的脑瓜和孜孜不倦的钻研精神,成为了某中型企业的资深网站管理员.不同于一般的"网管",二狗子自然是业内最优秀的那一类. 但是,最 ...

  7. redis的安装与五种结构的使用

    这次我们来说说我们的redis,在我们的redis的认知里,最熟悉的就是用redis作为缓存使用,还有我们的分布式session,其实还有很多redis的使用,还有redis的哨兵模式等等. Redi ...

  8. html5新媒体播放器标签video、audio 与embed、object

    html5里的一些新的标签,看到里面object.embed.video.audio都可以添加视频或音频文件 embed是针对非IE的浏览器的媒体播放器 video是html5出的一种新标准,但并不是 ...

  9. AVL树、红黑树以及B树介绍

    简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与 ...

  10. Spring Boot2 系列教程(十一)Spring Boot 中的静态资源配置

    当我们使用 SpringMVC 框架时,静态资源会被拦截,需要添加额外配置,之前老有小伙伴在微信上问松哥 Spring Boot 中的静态资源加载问题:"松哥,我的 HTML 页面好像没有样 ...