bsoj5988

Description

【题目背景】

  NOI2018 已经过去了许久,2019 届的 BSOIer 们退役的退役,颓废的颓废,计数能力大不如前。曾经的数数之王 xxyj 坦言:“我现在算期望都靠枚举”,嘴边还挂着什么“分布列”,什么“样本数据”,然后又继续投身于文化课学习中了。

为了让 OI 的火炬传递下去,苣蒻 AChen 决定将 xxyj 退役前随口提到的期望问题交给你来解决。

【题目描述】

  现有 m + 1 个白色的小球排成一列并从一开始编号。每次操作从前 m 个小球中随机选择一个涂黑。现在执行了 n 次操作,则编号最小的白球编号的期望是多少?

Input

  从文件 mex.in 中读入数据。

  输入共一行两个整数 n,m。表示操作次数和白色小球的个数

Output

  输出到文件 mex.out 中。

  若最小的白球编号的期望为 E,则输出一行表示:((m^n)* E) mod (10^9 + 7)

  可以看出上式一定是个整数。

Sample Input

1 1

Sample Output

2

Hint

n <= 10^9, m <= 10^6

Source

Achen

%%%AChen队爷%%%

考察对容斥的基础理解,挺不错的一题

易列答案式

\[\sum_{i=1}^{m+1} P(mex = i) i
\]

对这种期望,常使用套路化法

\[\sum_{i=0}^m P(mex>i)
\]

和式里面相当于要求已钦定\(i\)个确定的球,求随机选\(n\)次将这\(i\)个球全部染黑的概率。

考虑容斥。先随便选,然后减去一个球未染的,然后加上两个球未染的,...

\[\sum_{i=0}^{m} \sum_{k=0}^{i} (-1)^k C_i^k (\frac{m-k}{m})^n
\]

(其实是一个类似二项式反演的容斥)

更换枚举

\[\sum_{k=0}^{m} (-1)^k (\frac{m-k}{m})^n \sum_{i=k}^{m} C_i^k
\]

又由组合数的性质

\[\sum_{i=k}^{n} C_i^k = C_{n+1}^{k+1}
\]

(容易通过杨辉三角和组合数的递推式证明)

\[\sum_{k=0}^{m} (-1)^k (\frac{m-k}{m})^n C_{m+1}^{k+1}
\]

直接计算即可。

数据量如果更大的话,可以线筛出所有\(n\)次幂以省掉快速幂的$\log $。偷懒不写了(

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
const ll MOD=1E9+7; ll QPow(ll x,ll up){
x%=MOD;
ll ans=1;
while(up)
if(up%2==0) x=x*x%MOD,up=up/2;
else ans=ans*x%MOD,up--;
return ans;
}
ll Inv(ll x){
return QPow(x,MOD-2);
} const ll MXN=1E6+5;
ll fac[MXN],facInv[MXN];
void FacInit(ll n){
fac[0]=1;for(ll i=1;i<=n;i++) fac[i]=fac[i-1]*i%MOD;
facInv[n]=Inv(fac[n]);for(ll i=n-1;i>=1;i--) facInv[i]=facInv[i+1]*(i+1)%MOD;
facInv[0]=1;
}
ll C(ll n,ll m){
if(n<m) return 0;
return fac[n]*facInv[m]%MOD*facInv[n-m]%MOD;
} ll N,M;
int main(){
scanf("%lld%lld",&N,&M);
FacInit(M+1);
ll Ans=0;
for(ll k=0;k<=M;k++){
ll p=1;if(k%2==1) p=(-1+MOD)%MOD;
Ans+=p*QPow(M-k,N)%MOD*C(M+1,k+1)%MOD;
Ans%=MOD;
}
printf("%lld",Ans);
return 0;
}

bsoj5988 [Achen模拟赛]期望 题解的更多相关文章

  1. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  2. 2020.3.23 模拟赛游记 & 题解

    这次的模拟赛,实在是水. 数据水,\(\texttt{std}\) 水,出题人水,做题人也水.??? 游记就说一句: 水. T1 metro 弱智题. 人均 \(100pts\). #pragma G ...

  3. 洛谷[LnOI2019]长脖子鹿省选模拟赛 简要题解

    传送门 听说比赛的时候T4T4T4标程锅了??? WTF换我时间我要写T3啊 于是在T4T4T4调半天无果的情况下260pts260pts260pts收场真的是tcltcltcl. T1 快速多项式变 ...

  4. NOIP模拟赛10 题解

    t3: 题意 给你一棵树,然后每次两种操作:1.给一个节点染色 : 2. 查询一个节点与任意已染色节点 lca 的权值的最大值 分析 考虑一个节点被染色后的影响:令它的所有祖先节点(包括自身)的所有除 ...

  5. BJOI 模拟赛 #3 题解

    T1 一个网格,每个点有权值,求有多少条路径权值乘积不小于 $n$ $R,C \leq 300, n \leq 10^6$ sol: 暴力 dp 是 $O(R \times C \times n)$ ...

  6. BJOI 2019 模拟赛 #2 题解

    T1 完美塔防 有一些空地,一些障碍,一些炮台,一些反射镜 障碍会挡住炮台的炮, 反射镜可以 90° 反射炮台的光线,炮台可以选择打他所在的水平一条线或者竖直一条线 求是否有一组方案满足每个空地必须要 ...

  7. 【CYH-02】noip2018数论模拟赛:赛后题解

    1.小奔的矩阵 2.大奔的方案 3.小奔与不等四边形 4.小奔的方案 当然本次比赛肯定难度不会仅限于此啦!后续还会--

  8. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  9. 18/9/21模拟赛-Updated

    18/9/21模拟赛 期望得分:100:实际得分:0  qwq 拿到题目第一眼,我去,这不是洛谷原题(仓鼠找Sugar)吗 又多看了几眼,嗯,对,除了是有多组数据外,就是原题 然后码码码....自以为 ...

随机推荐

  1. PowerMock学习(六)之Mock Final的使用

    Mock Final mockfinal相对来说就比较简单了,使用powermock来测试使用final修饰的method或class,比较简单,接口调用部分,还是service调用dao. 对于接口 ...

  2. Hadoop运行模式

    Hadoop运行模式 (1)本地模式(默认模式): 不需要启用单独进程,直接可以运行,测试和开发时使用. 即在一台机器上进行操作,仅为单机版. 本地运行Hadoop官方MapReduce案例 操作命令 ...

  3. 浅谈.NET中的反射

    一.概述  1.通过反射可以提供类型信息,从而使得我们开发人员在运行时能够利用这些信息构造和使用对象 2.反射机制允许程序在执行过程中动态地添加各种功能 二.运行时类型标识 1.运行时类型标志(RTT ...

  4. day20191006假期作业收尾

    国庆作业:(轻重缓急,重点代码看懂理解了.每天重心就是代码,理解代码,理解,understand the code.花时间花功夫.只要功夫深,铁杵磨成针.) 一.使用DAO设计模式操作数据库CRUD( ...

  5. 安装iris框架

    1.导语 目前Go语言已经为大多数人所熟知,越来越多的开发人员选择使用Go语言来进行开发,但是如何使用 Go来进行web开发,在其他编程语言中都有对应的开发框架,当然在Go中也有,就是即将要介绍的-- ...

  6. python拆包

    如果需要把原组A赋值给args  字典B 赋值给kwargs 在调用函数的时候需要给参数 加上星号*

  7. 2019-2020-1 20199304《Linux内核原理与分析》第五周作业

    第四章 系统调用的三层机制(上) 4.1 用户态.内核态和中断 知识点总结: 与系统调用打交道的方式是通过库函数的方式. 用户态与内核态的区分 内核态:高的执行级别下,代码可以执行特权指令,访问任意的 ...

  8. LVS+Keepalived-DR模式(Apache)

    Environment:4台CentOS机器 两台LVS 两台web服务器 LVS主备的操作,都需要安装ipvsadm和keepalived LVS主机操作 : 1.更改Keepalived的配置文件 ...

  9. 转:spring aop 拦截业务方法,实现权限控制

    难点:aop类是普通的java类,session是无法注入的,那么在有状态的系统中如何获取用户相关信息呢,session是必经之路啊,获取session就变的很重要.思索很久没有办法,后来在网上看到了 ...

  10. vue 常用的官网

    vue.js     https://cn.vuejs.org/ v-charts  https://v-charts.js.org/#/                    (图表,地图) web ...