在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算; 
 
0  ≤B i < i  忍者的上级的编号;
1  ≤Ci ≤ M                     忍者的薪水;
1  ≤Li ≤ 1,000,000,000             忍者的领导力水平。
 
 

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预 算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 B i , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0 并且每一个忍者的老板的编号一定小于自己的编号 B i < i
 

Output

输出一个数,表示在预算内顾客的满意度的最大值。
 
 

Sample Input
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output6

Hint

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算                         4。因为派遣了                              2   个忍者并且管理者的领导力为      3,

用户的满意度为 2      ,是可以得到的用户满意度的最大值。

题解:左偏树板题;

dfs搜索时,如果超过了薪水总量,就去掉堆顶元素(最大元素),更新ans的值即可;

参考代码:

 #include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof (a))
#define fi first
#define se second
#define pb push_back
#define eps 1e-6
typedef long long ll;
const int INF=0x3f3f3f3f;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=1e5+;
struct edge{
int to,next;
} a[N];
int head[N],cnt;
int n,Master,ls[N],rs[N],dis[N];
ll m,C[N],L[N],sum[N],sz[N],ans; void addedge(int u,int v)
{
a[++cnt]=(edge){v,head[u]};
head[u]=cnt;
}
int Merge(int A,int B)//合并树
{
if (!A||!B) return A+B;
if(C[A]<C[B]) swap(A,B);
rs[A]=Merge(rs[A],B);
if(dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+;
return A;
}
int Delete(int A)//去除堆顶
{
return Merge(ls[A],rs[A]);
}
int find(int x){if(f[x]!=x) f[x]=find(f[x]);return f[x];}
int pop(int x)
{
f[x]=Merge(ls[x],rs[x]);
f[f[x]]=f[x];
ls[x]=rs[x]=dis[x]=;
return f[x];
}
int dfs(int u)
{
int A=u,B;
sum[u]=C[u]; sz[u]=;
for(int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
B=dfs(v);
A=Merge(A,B);
sum[u]+=sum[v];sz[u]+=sz[v];
}
while(sum[u]>m)//超过要求的薪水
{
sum[u]-=C[A];sz[u]--;//去掉所需薪水最大的Master
A=Delete(A);
}
ans=max(ans,L[u]*sz[u]);
return A;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
{
int u=read();
C[i]=read();L[i]=read();
if(!u) Master=i;
else addedge(u,i);
}
dfs(Master);
printf("%lld",ans);
return ;
}

BZOJ2809 dispatching(左偏树)的更多相关文章

  1. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

  2. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  3. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  4. APIO2012 派遣dispatching | 左偏树

    题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...

  5. [Apio2012]dispatching 左偏树

    题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...

  6. [Apio2012]dispatching 左偏树做法

    http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...

  7. 【BZOJ2809】【APIO2012】Dispatching(左偏树)

    题面 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个 ...

  8. [BZOJ2809][Apio2012]dispatching(左偏树)

    首先对于一个节点以及它的子树,它的最优方案显然是子树下选最小的几个 用左偏树维护出每棵子树最优方案的节点,记录答案 然后它的这棵树可以向上转移给父节点,将所有子节点的左偏树合并再维护就是父节点的最优方 ...

  9. 【BZOJ2809】[APIO2012] dispatching(左偏树例题)

    点此看题面 大致题意: 有\(N\)名忍者,每名忍者有三个属性:上司\(B_i\),薪水\(C_i\)和领导力\(L_i\).你要选择一个忍者作为管理者,然后在所有被他管理的忍者中选择若干名忍者,使薪 ...

随机推荐

  1. Unity中动态创建Mesh

    什么是Mesh? Mesh是指的模型的网格,3D模型是由多边形拼接而成,而多边形实际上又是由多个三角形拼接而成的.即一个3D模型的表面其实是由多个彼此相连的三角面构成.三维空间中,构成这些三角形的点和 ...

  2. html与css连接代码

    demo01.html: <!DOCTYPE html><html> <head>  <meta charset="utf-8">  ...

  3. Jsp自学2

    Jsp简单来说就是java代码与Html代码的组合,类,方法,属性跟网页展示夹杂在一起.Jsp就是Servlet,但比Servle简单,不需要配置web.xml(当然也可以配置).Jsp由模板数据与元 ...

  4. 【2018寒假集训 Day1】【位运算】桐桐的运输方案

    桐桐的运输方案(transp) [问题描述] 桐桐有 N 件货物需要运送到目的地,它们的重量和价值分别记为: 重量:W1,W2,…,Wn: 价值:V1,V2,…,Vn: 已知某辆货车的最大载货量为 X ...

  5. Ajax与Http协议

    目录 Ajax与Http协议详解 Xhr对象 xhr对象发送请求整体感知 xhr对象的常用属性和方法 xhr对象发送post请求 xhr对象的兼容性问题 请求超时timeout与监听超时ontimeo ...

  6. 学会使用这些,你的Windows可能会焕然一新

    星选哥用Windows也已经好多年了,今天用室友的电脑才发现,桌面真可以影响一个人的心情,从而影响工作,学习,生活. 所以准备推荐一些好用且轻量的小工具,让你时时刻刻有个好心情. 室友的桌面(还有很多 ...

  7. 基于 HTML5 + WebGL 的地铁 3D 可视化系统

    前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCAD ...

  8. requests请求库练习--GitHub登录

    # coding = utf-8 """ 结合抓包工具,采用两种方法模拟登录github直接利用session登录和利用requests登录 ""&q ...

  9. mysql中给查询出的结果集添加自增序号

    select (@i:=@i+1) i,emp.* from emp,(select @i:=0) it 按部门分组并按薪资总和从大到小排序求薪资总和第二高的部门名称和薪资总和:select c.en ...

  10. 螺旋矩阵II

    Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral ord ...