在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算; 
 
0  ≤B i < i  忍者的上级的编号;
1  ≤Ci ≤ M                     忍者的薪水;
1  ≤Li ≤ 1,000,000,000             忍者的领导力水平。
 
 

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预 算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 B i , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0 并且每一个忍者的老板的编号一定小于自己的编号 B i < i
 

Output

输出一个数,表示在预算内顾客的满意度的最大值。
 
 

Sample Input
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output6

Hint

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算                         4。因为派遣了                              2   个忍者并且管理者的领导力为      3,

用户的满意度为 2      ,是可以得到的用户满意度的最大值。

题解:左偏树板题;

dfs搜索时,如果超过了薪水总量,就去掉堆顶元素(最大元素),更新ans的值即可;

参考代码:

 #include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof (a))
#define fi first
#define se second
#define pb push_back
#define eps 1e-6
typedef long long ll;
const int INF=0x3f3f3f3f;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=1e5+;
struct edge{
int to,next;
} a[N];
int head[N],cnt;
int n,Master,ls[N],rs[N],dis[N];
ll m,C[N],L[N],sum[N],sz[N],ans; void addedge(int u,int v)
{
a[++cnt]=(edge){v,head[u]};
head[u]=cnt;
}
int Merge(int A,int B)//合并树
{
if (!A||!B) return A+B;
if(C[A]<C[B]) swap(A,B);
rs[A]=Merge(rs[A],B);
if(dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+;
return A;
}
int Delete(int A)//去除堆顶
{
return Merge(ls[A],rs[A]);
}
int find(int x){if(f[x]!=x) f[x]=find(f[x]);return f[x];}
int pop(int x)
{
f[x]=Merge(ls[x],rs[x]);
f[f[x]]=f[x];
ls[x]=rs[x]=dis[x]=;
return f[x];
}
int dfs(int u)
{
int A=u,B;
sum[u]=C[u]; sz[u]=;
for(int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
B=dfs(v);
A=Merge(A,B);
sum[u]+=sum[v];sz[u]+=sz[v];
}
while(sum[u]>m)//超过要求的薪水
{
sum[u]-=C[A];sz[u]--;//去掉所需薪水最大的Master
A=Delete(A);
}
ans=max(ans,L[u]*sz[u]);
return A;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
{
int u=read();
C[i]=read();L[i]=read();
if(!u) Master=i;
else addedge(u,i);
}
dfs(Master);
printf("%lld",ans);
return ;
}

BZOJ2809 dispatching(左偏树)的更多相关文章

  1. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

  2. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  3. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  4. APIO2012 派遣dispatching | 左偏树

    题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...

  5. [Apio2012]dispatching 左偏树

    题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...

  6. [Apio2012]dispatching 左偏树做法

    http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...

  7. 【BZOJ2809】【APIO2012】Dispatching(左偏树)

    题面 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个 ...

  8. [BZOJ2809][Apio2012]dispatching(左偏树)

    首先对于一个节点以及它的子树,它的最优方案显然是子树下选最小的几个 用左偏树维护出每棵子树最优方案的节点,记录答案 然后它的这棵树可以向上转移给父节点,将所有子节点的左偏树合并再维护就是父节点的最优方 ...

  9. 【BZOJ2809】[APIO2012] dispatching(左偏树例题)

    点此看题面 大致题意: 有\(N\)名忍者,每名忍者有三个属性:上司\(B_i\),薪水\(C_i\)和领导力\(L_i\).你要选择一个忍者作为管理者,然后在所有被他管理的忍者中选择若干名忍者,使薪 ...

随机推荐

  1. 玩转VSCode-完整构建VSCode开发调试环境

    随着VSCode的不断完善和强大,是时候将部分开发迁移到VS Code中了. 目前使用VS2019开发.NET Core应用,一直有一个想法,在VS Code中复刻VS的开发环境,同时迁移到VS Co ...

  2. [LC]35题 Search Insert Position (搜索插入位置)

    ①英文题目 Given a sorted array and a target value, return the index if the target is found. If not, retu ...

  3. 理解Spark运行模式(三)(STANDALONE和Local)

    前两篇介绍了Spark的yarn client和yarn cluster模式,本篇继续介绍Spark的STANDALONE模式和Local模式. 下面具体还是用计算PI的程序来说明,examples中 ...

  4. WordPress 去掉底部的自豪的采用WordPress

    WordPress 去掉底部的自豪的采用WordPress  

  5. Django 基本使用

    Django 基本使用 Django 安装 pip install django Django 创建项目 django-admin startproject 项目名称 Django 创建应用 pyth ...

  6. Cesium小插件改造--clock和timeline

    一.Clock 废话不多说,先上效果图再说.如效果图所示:clock的日期显示为YY/MM/DD这种简洁明了格式,时间则为当前系统时间(也就是北京时间).Clock内部以儒略日(JulianDate) ...

  7. 带你涨姿势的认识一下 Kafka 消费者

    之前我们介绍过了 Kafka 整体架构,Kafka 生产者,Kafka 生产的消息最终流向哪里呢?当然是需要消费了,要不只产生一系列数据没有任何作用啊,如果把 Kafka 比作餐厅的话,那么生产者就是 ...

  8. Java从零到企业级电商项目实战(第1章 课程介绍)

  9. mybatis精讲(四)--ObjectFactory

    目录 前言 mybatis的ObjectFactory 源码 setProperties create instantiateClass 使用场景 # 加入战队 微信公众号 前言 ObjectFact ...

  10. 小白的springboot之路(二)、集成swagger

    0-前言 现在的项目开发,基本都是前后端分离,后端专注于API接口开发,都需要编写和维护API接口文档.如果你还在用Word来编写接口文档,那你就out了,这个时候,当当当当~神兵利器swagger隆 ...