02-11 RANSAC算法线性回归(波斯顿房价预测)
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
RANSAC算法线性回归(波斯顿房价预测)
虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据子集(所谓的内点)拟合回归模型。
一、RANSAC算法流程
- 随机选择一定数量的样本作为内点拟合模型
- 用模型测试其他所有的点,把落在给定范围内的点放入内点集
- 调整模型中使用的所有内点
- 用内点重新拟合模型
- 评估模型预测结果与内点集相比较的误差
- 如果性能达到自定义的阈值或指定的迭代次数,则终止,否则返回步骤1
二、导入模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import LinearRegression
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
三、获取数据
df = pd.read_csv('housing-data.txt', sep='\s+', header=0)
X = df[['RM']].values
y = df['MEDV'].values
四、训练模型
# max_trials=88即最大迭代次数为88次
# min_samples=66即样本最低数量为66个
# loss=‘absolute_loss’即使用均方误差损失函数
# residual_threshold=6即只允许与拟合线垂直距离在6个单位以内的采样点被包括在内点集
ransac = RANSACRegressor(LinearRegression(),
max_trials=88,
min_samples=66,
loss='absolute_loss',
residual_threshold=6)
ransac.fit(X, y)
# 获取内点集
inlier_mask = ransac.inlier_mask_
# 获取非内点集
outlier_mask = np.logical_not(inlier_mask)
# 建立回归线
line_X = np.arange(3, 10, 1)
# 由于ransac模型期望数据存储在二维阵列中,因此使用line_X[:, np.newaxis]方法给X增加一个新维度
line_y_ransac = ransac.predict(line_X[:, np.newaxis])
五、可视化
plt.scatter(X[inlier_mask], y[inlier_mask], c='r',
edgecolor='white', marker='s', label='内点')
plt.scatter(X[outlier_mask], y[outlier_mask], c='g',
edgecolor='white', marker='o', label='离群点')
plt.plot(line_X, line_y_ransac, color='k')
plt.xlabel('平均房间数目[MEDV]', fontproperties=font)
plt.ylabel('以1000美元为计价单位的房价[RM]', fontproperties=font)
plt.title('波士顿房价预测', fontproperties=font, fontsize=20)
plt.legend(prop=font)
plt.show()
print('RANSAC算法线性回归斜率:{}'.format(ransac.estimator_.coef_[0]))
_11_0.png?x-oss-process=style/watermark)
RANSAC算法线性回归斜率:9.546893365978166
使用RANSAC算法之后可以发现线性回归拟合的线与未用RANSAC算法拟合出来的线的斜率(普通线性回归斜率:9.10210898118031)不同,可以说RANSAC算法降低了离群值潜在的影响,但是这并不能说明这种方法对未来新数据的预测性能是否有良性影响。
02-11 RANSAC算法线性回归(波斯顿房价预测)的更多相关文章
- Python之机器学习-波斯顿房价预测
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...
- 掌握Spark机器学习库-07.14-保序回归算法实现房价预测
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...
- 机器学习实战二:波士顿房价预测 Boston Housing
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...
- 使用sklearn进行数据挖掘-房价预测(5)—训练模型
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...
- Ames房价预测特征工程
最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特 ...
- 梯度消失、梯度爆炸以及Kaggle房价预测
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸( ...
- 使用pmml跨平台部署机器学习模型Demo——房价预测
基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2 ...
- RANSAC算法详解
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作 ...
- 使用sklearn进行数据挖掘-房价预测(4)—数据预处理
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...
随机推荐
- Node基础-CommonJS模块化规范
1.在本地项目中基于NPM/YARN安装第三方模块 第一步:在本地项目中创建一个"package.json"的文件 作用:把当前项目所有依赖的第三方模块信息(包含:模块名称以及版本 ...
- Python---变量和简单的数据类型
我会站在一个c/c++的基础上去看python的学习,尽量会在文中比较两者的区别,有什么说的不对的地方,欢迎指出,大家共同学习(o_o).(此后的文章都会基于python3以上版本去写) 1.变量 变 ...
- RedisTemplate.opsForValue 常用方法
RedisTemplate.opsForValue 常用方法 1.set(K key, V value) 新增一个字符串类型的值,key是键,value是值. redisTemplate.opsFor ...
- 纯纯的css画美美的彩虹
效果 效果图如下 实现思路 使用box-shadow画赤橙黄绿蓝靛紫7个弧形,拼接在一起 after伪元素写投影样式 彩虹和投影都有动画 dom结构 用两个嵌套的div容器,父容器来控制图标显示的 ...
- Servlet重定向
重定向就是在访问一个Servlet时,没有得到资源,只能去找另外一个Servlet去获取资源.状态码为302. import javax.servlet.ServletException; impor ...
- Hive导入数据到HBase,再与Phoenix映射同步
1. 创建HBase 表 create 'hbase_test','user' 2. 插入数据 put 'hbase_test','111','user:name','jack' put 'hbase ...
- js-数据交互--AJAX
一:介绍 今天跟下大家简单的介绍一下,在前端开发中,前后端数据交互的一种手段,我们都知道,在前端往后端传送数据的话,利用get,post方法即可向后端发送数据,后端将数据接受,链接到数据库,进行数据库 ...
- Python 之父的解析器系列之七:PEG 解析器的元语法
原题 | A Meta-Grammar for PEG Parsers 作者 | Guido van Rossum(Python之父) 译者 | 豌豆花下猫("Python猫"公众 ...
- C++进程间通讯方式
1.剪切板模式. 在MFC里新建两个文本框和两个按钮,点击发送按钮相当于复制文本框1的内容,点击接收按钮相当于粘贴到文本框2内: 发送和接收按钮处功能实现如下: void CClipboard2Dlg ...
- 代码审计之XSS及修复
xss在平时的测试中,还是比较重要的,如果存在储存型xss,就可以做很多事情了,打cookie,添加管理员等等很多操作. 以下所有代码都是我自己写的,可能有不美观,代码错误等等问题,希望大家可以指正. ...