更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

RANSAC算法线性回归(波斯顿房价预测)

虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据子集(所谓的内点)拟合回归模型。

一、RANSAC算法流程

  1. 随机选择一定数量的样本作为内点拟合模型
  2. 用模型测试其他所有的点,把落在给定范围内的点放入内点集
  3. 调整模型中使用的所有内点
  4. 用内点重新拟合模型
  5. 评估模型预测结果与内点集相比较的误差
  6. 如果性能达到自定义的阈值或指定的迭代次数,则终止,否则返回步骤1

二、导入模块

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import LinearRegression
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')

三、获取数据

df = pd.read_csv('housing-data.txt', sep='\s+', header=0)
X = df[['RM']].values
y = df['MEDV'].values

四、训练模型

# max_trials=88即最大迭代次数为88次
# min_samples=66即样本最低数量为66个
# loss=‘absolute_loss’即使用均方误差损失函数
# residual_threshold=6即只允许与拟合线垂直距离在6个单位以内的采样点被包括在内点集
ransac = RANSACRegressor(LinearRegression(),
max_trials=88,
min_samples=66,
loss='absolute_loss',
residual_threshold=6)
ransac.fit(X, y) # 获取内点集
inlier_mask = ransac.inlier_mask_
# 获取非内点集
outlier_mask = np.logical_not(inlier_mask)
# 建立回归线
line_X = np.arange(3, 10, 1)
# 由于ransac模型期望数据存储在二维阵列中,因此使用line_X[:, np.newaxis]方法给X增加一个新维度
line_y_ransac = ransac.predict(line_X[:, np.newaxis])

五、可视化

plt.scatter(X[inlier_mask], y[inlier_mask], c='r',
edgecolor='white', marker='s', label='内点')
plt.scatter(X[outlier_mask], y[outlier_mask], c='g',
edgecolor='white', marker='o', label='离群点')
plt.plot(line_X, line_y_ransac, color='k') plt.xlabel('平均房间数目[MEDV]', fontproperties=font)
plt.ylabel('以1000美元为计价单位的房价[RM]', fontproperties=font)
plt.title('波士顿房价预测', fontproperties=font, fontsize=20)
plt.legend(prop=font)
plt.show()
print('RANSAC算法线性回归斜率:{}'.format(ransac.estimator_.coef_[0]))

RANSAC算法线性回归斜率:9.546893365978166

使用RANSAC算法之后可以发现线性回归拟合的线与未用RANSAC算法拟合出来的线的斜率(普通线性回归斜率:9.10210898118031)不同,可以说RANSAC算法降低了离群值潜在的影响,但是这并不能说明这种方法对未来新数据的预测性能是否有良性影响。

02-11 RANSAC算法线性回归(波斯顿房价预测)的更多相关文章

  1. Python之机器学习-波斯顿房价预测

    目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...

  2. 掌握Spark机器学习库-07.14-保序回归算法实现房价预测

    数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...

  3. 机器学习实战二:波士顿房价预测 Boston Housing

    波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...

  4. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  5. Ames房价预测特征工程

    最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特 ...

  6. 梯度消失、梯度爆炸以及Kaggle房价预测

    梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸( ...

  7. 使用pmml跨平台部署机器学习模型Demo——房价预测

      基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2 ...

  8. RANSAC算法详解

    给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作 ...

  9. 使用sklearn进行数据挖掘-房价预测(4)—数据预处理

    在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...

随机推荐

  1. 【Offer】[9] 【用两个栈实现队列】

    题目描述 思路分析 Java代码 代码链接 题目描述 用两个栈实现队列 思路分析 栈--> 先进后出 队列--> 先进先出 进队列操作,选择栈s1进栈,关键在与实现出队列操作,要考虑到队列 ...

  2. Linux中新建用户用不了sudo命令问题:rootr is not in the sudoers file.This incident will be reported解决

    参考:https://blog.csdn.net/lichangzai/article/details/39501025 如果执行sudo命令的用户没有执行sudo的权限,执行sudo命令时会报下面的 ...

  3. LVM扩容根分区

    LVM的工作方式 LVM管理工具集 [root@wendang ~]# lsblk NAME            MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT sda    ...

  4. ScrollView内嵌ViewPager导致ViewPager滑动困难问题

    转自:http://titanseason.iteye.com/blog/1858874 解决方式:重写ScrollView,然后在xml中定义布局的时候,使用自定义的PagerScrollView而 ...

  5. .Net基础篇_学习笔记_第六天_for循环语法_正序输出和倒序输出

    for TAB  和 forr TAB using System; using System.Collections.Generic; using System.Linq; using System. ...

  6. window 定时关机小程序bat

    复制以下文本,新建txt文件并修改为bat后缀 如图: @echo off title 定时关机 echo 定时关机程序 echo ---------------------------------- ...

  7. Cookie的获取

    1.先创建Cookie对象,设置Cookie的键和值: Cookie cookie1="); Cookie cookie2="); Cookie cookie3="); ...

  8. ElasticSearch实战系列二: ElasticSearch的DSL语句使用教程---图文详解

    前言 在上一篇中介绍了ElasticSearch集群和kinaba的安装教程,本篇文章就来讲解下 ElasticSearch的DSL语句使用. ElasticSearch DSL 介绍 Elastic ...

  9. 2019-2020-1 20199314 <Linux内核原理与分析>第一周作业

    前言 本周对实验楼的Linux基础入门进行了学习,目前学习到实验九完成到挑战二. 学习和实验内容 快速学习了Linux系统的发展历程及其简介,学习了下的变量.用户权限管理.文件打包及压缩.常用命令的和 ...

  10. IO流 - 字节输入输出流,文件的复制

    IO流 I:input - 输入(读取),eg:把硬盘的内容读取到内存 O: output - 输出(写入) eg:把内存中的东西写入硬盘保存 流:数字(字符/字节) 一般1个字符=2Byte,1By ...