CF1194D 1-2-K Game (博弈论)
CF1194D 1-2-K Game
一道简单的博弈论题
首先让我们考虑没有k的情况:
1. (n mod 3 =0)
因为n可以被分解成若干个3相加
而每个3可以被分解为1+2或2+1
所以无论A出什么B都有方法应对
B胜
2. (n mod 3 =1)
A可以先选择余数1
这样问题又回到了第一种情况
AB角色互换
A胜
3. (n mod 3 =2)
与2同理,A先选2即胜
而现在多出来的这个k也可以看成是3的某个自然数倍数加上一个小于3的数
即\(k\equiv x\left( mod3\right)\)
我们再来对x分类讨论:
1. (x=0)
此时的k就好像快速地切除1+2或2+1的回合
但对手总不会站着不动吧?
我们知道B总是有方法使每一回合内(A+B)%3都等于1的
列举一下(k用3代替):
A:1 B:3
A:2 B:2
A:3 B:1
是不是每回合在mod3意义下都是相同的?
那么若干个回合后如果无法实现上述方法了
即n%=k+1
如果n=k A获胜
否则情况又变回了无k的情况
%3判断即可
2. (x=1)
此时k就好像有着能省略若干个回合功能的1
k就可有可无了
又回到了无k的情况
3. (x=2)
与2同理
知道了这些,代码就很好写了:
int n,k,t;
signed main(){
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
if(k%3){
if(n%3) puts("Alice");
else puts("Bob");
}
else{
n%=k+1;
if(n==k||n%3) puts("Alice");
else puts("Bob");
}
}
}
CF1194D 1-2-K Game (博弈论)的更多相关文章
- ACM模板_axiomofchoice
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...
- django模型操作
Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表
- Codeforces Round #721 (Div. 2)A. And Then There Were K(位运算,二进制) B1. Palindrome Game (easy version)(博弈论)
半个月没看cf 手生了很多(手动大哭) Problem - A - Codeforces 题意 给定数字n, 求出最大数字k, 使得 n & (n−1) & (n−2) & ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 【POJ】2234 Matches Game(博弈论)
http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...
- 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏
文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...
- CodeForces 455B A Lot of Games (博弈论)
A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...
- HDU 5512 Meeting 博弈论
Meeting Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5512 ...
- hdu 4678 Mine 博弈论
这是一题简单的博弈论!! 所有的空白+边界的数字(个数为n)为一堆,容易推出其SG函数值为n%2+1: 其他所有的数字(个数为m)的SG值为m%2. 再就是用dfs将空白部分搜一下即可!(注意细节) ...
随机推荐
- murmurhash2算法 和 DJB Hash算法是目前最流行的hash算法
murmurhash2算法 和 DJB Hash算法是目前最流行的hash算法 1.DJB HASH算法 1 2 3 4 5 6 7 8 9 10 11 /* the famous DJB Hash ...
- Oracle 存储过程创建及调用
--------创建存储过程------- create or replace procedure TestSPas begin update table_name set CREATE_TIMEST ...
- oracle data guard备库备份恢复
客户有套data guard环境,主库在阿里云上,备库在本地机房,现在想定期做备份,但是因为一些原因,备份阿里云上的主库实现会有些问题,所以只能备份本地的备库.目前需求就是测试备库的备份文件是否可以进 ...
- Android多线程(一)
在Android应用的开发过程中,我们不可避免的要使用多线程,获取服务器数据.下载网络数据.遍历文件目录查找特定文件等等耗时的工作都离不开线程的知识.Android继承了Java的多线程体系,同时又实 ...
- CS224n笔记二:word2vec
如何表示词语的意思 语言学中meaning近似于"指代,代指,符号". 计算机中如何处理词语的意思 过去一直采用分类词典,计算语言学中常见的方式时WordNet那样的词库,比如NL ...
- QString之simplified()用于读取数据、规范数据,非常方便
在工程项目开发中,遇到这么个问题:手工计入文件中的数据,每行有三个,前两个是数字,最后一个是标识,现在把这3个数据提取出来. 一提取就出现问题了:由于手工导入,数据间使用空白间隔,有可能是一个空格,有 ...
- c++用参数返回堆上的空间
<高质量c++和c编程>7.4 指针参数是如何传递内存的一节中写道 void GetMemory(char *p, int num) { p = (char *)malloc(sizeof ...
- iOS登录及token的业务逻辑(没怎么用过,看各种文章总结)
http:是短连接. 服务器如何判断当前用户是否登录? // 1. 如果是即时通信类:长连接. // 如何保证服务器跟客户端保持长连接状态? // "心跳包" 用来检测用户是否在线 ...
- DHCP命令执行CVE-2018-1111漏洞复现
DHCP命令执行_CVE-2018-1111漏洞复现 一.漏洞描述 在Red Hat Enterprise Linux多个版本的DHCP客户端软件包所包含的NetworkManager集成脚本中发现了 ...
- 14 CSS权重深入
<!-- 继承说明: (1)进行样式选择时,不指定标签的话,该选择器是继承来的. (2)继承的选择器的优先级为0,和标签选择器的优先级无可比性. --> <!DOCTYPE html ...