题解 UVA12716 GCD等于XOR GCD XOR
规律题,打表找规律即可发现
a xor b >= a - b >= gcd(a, b),
如果 a xor b = gcd(a, b) = c 则 c = a - b
枚举倍数c和a判断b即可
但是我主要想讲的是这道题要注意的,就是在跑循环时,一定要注意数组是否越界,比如
int a[maxn];
scanf("%d",&T);
for(int i=1;i<=maxn;++i){
a[i]=i;
}
这样写会造成你读入的T被覆盖,导致输出超限,因为数组a[maxn]不能存数,所以循环不能跑到maxn
这样写就是对的
int a[maxn];
for(int i=1;i<=maxn;++i){
a[i]=i;
}
scanf("%d",&T);
由于你的T是后面读入的,所以不造成影响。
所以各位csper们,要注意预处理千万不要越界!
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=30000010;
long long ans[maxn+10];//保证不越界
int T,n;
int main(){
for(int c=1;c<=maxn;++c){
for(int a=c*2;a<=maxn;a+=c){
int b=a-c;
if((a^b)==c) ans[a]++;
}
}
for(int i=1;i<=maxn;++i){
ans[i]+=ans[i-1];
}
scanf("%d",&T);
for(int i=1;i<=T;++i){
scanf("%d",&n);
printf("Case %d: %d\n",i,ans[n]);
}
return 0;
}
题解 UVA12716 GCD等于XOR GCD XOR的更多相关文章
- UVA - 12716 GCD XOR(GCD等于XOR)(数论)
题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...
- HDU 5656 CA Loves GCD 01背包+gcd
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- 学习:数学----gcd及扩展gcd
gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解 辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...
- 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明
\[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...
- 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...
- iOS边练边学--GCD的基本使用、GCD各种队列、GCD线程间通信、GCD常用函数、GCD迭代以及GCD队列组
一.GCD的基本使用 <1>GCD简介 什么是GCD 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 GCD的优势 G ...
- Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1
/** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...
- hdu 5974 A Simple Math Problem gcd(x,y)=gcd((x+y),lcm(x,y))
题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)= ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
随机推荐
- HDP Hive性能调优
(官方文档翻译整理及总结) 一.优化数据仓库 ① Hive LLAP 是一项接近实时结果查询的技术,可用于BI工具以及网络看板的应用,能够将数据仓库的查询时间缩短到15秒之内,这样的查询称之为Int ...
- 当下最流行的微服务与spring cloud,你搞清楚了吗?
微服务架构:Spring-Cloud 什么是微服务? 微服务就是把原本臃肿的一个项目的所有模块拆分开来并做到互相没有关联,甚至可以不使用同一个数据库. 比 如:项目里面有User模块和Power模块, ...
- python 字符串格式化format
通过{}和:来代替传统%方式 1.位置参数 位置参数不受顺序约束,且可以为{},只要format里有相对应的参数值即可,参数索引从0开,传入位置参数列表可用*列表 >>> li ...
- shardingjdbc 强制路由走主库查询实时数据 避免主从同步数据延迟
@Beanpublic shardingsphere.demo.entity.Order order(){ shardingsphere.demo.entity.Order order=new Ord ...
- 佳木斯集训Day3
D3是我的巅峰 D3的出题人毒瘤!!!T3放了一道莫队,我们全体爆炸,到现在只有一个奆老A掉了T3 据说lkh被晓姐姐D了 T1是个26进制数,当时在考场上想了好久才想到(太次了)注意需要处理一下溢出 ...
- Layui多文件上传进度条
Layui原生upload模块不支持文件上传进度条显示,百度,谷歌找了一下不太适用.后面找到一个别人修改好的JS,替换上去,修改一下页面显示即可使用,一下是部分代码 HTML: <div cla ...
- java虚拟机学习笔记(五)---运行时的数据区域
Java虚拟机所管理的内存包括以下几个运行时的数据区域:方法区,堆,虚拟机栈,本地方法栈,程序计数器.下面对其进行介绍: 程序计数器 它是一块较小的内存空间,可以看做当前线程做执行的字节码的信号指示器 ...
- 28岁,转行学 IT 靠谱吗?
前几天在知乎上,刷到这么一个问题 鉴于有不少人看了我的blog给我私信一些职业规划相关的问题,讨论很多的就是担心自己年龄是否还适合转行. 于是决定静心下来码了一篇回答, 同时搬到博客园来供大家消遣.. ...
- win10文件备份、文件同步方案
用个人版onedrive同步重要数据,数据安全有保障,但免费版只有15G空间,需要合理分配.(201907与别人合租家庭版,空间1T充足) google-drive可以同步指定的文件夹,但空间也只有1 ...
- print,cat打印格式及字符串引号格式,去掉字符串空格 in R
print 函数的打印格式: ##no quote print out > x <- letters[1:5] > print(x,quote=F,);print(x,quote=T ...