理解Redis的单线程模式
0.概述
本文基于的Redis版本为4.0以下,在Redis更高版本中并不是完全的单线程了,增加了BIO线程,本文主要讲述主工作线程的单线程模式。
通过本文将了解到以下内容:
- Redis服务器采用单线程模型的原因
- Redis单线程处理文件事件和时间事件
- Redis事件的执行和调度
1.Redis的单线程模式
- 单线程的现状
本质上Redis并不是单纯的单线程服务模型,一些辅助工作比如持久化刷盘、惰性删除等任务是由BIO线程来完成的,这里说的单线程主要是说与客户端交互完成命令请求和回复的工作线程。
- 单线程的原因
至于Antirez大佬当时是怎么想的设计为单线程不得而知,只能从几个角度来分析,来确定单线程模型的选择原因:
- CPU并非瓶颈
多线程模型主要是为了充分利用多核CPU,让线程在IO阻塞时被挂起让出CPU使用权交给其他线程,充分提高CPU的使用率,但是这个场景在Redis并不明显,因为CPU并不是Redis的瓶颈,Redis的所有操作都是基于内存的,处理事件极快,因此使用多线程来切换线程提高CPU利用率的需求并不强烈;
- 内存才是瓶颈
单个Redis实例对单核的利用已经很好了,但是Redis的瓶颈在于内存,设想64核的机器假如内存只有16GB,那么多线程Redis有什么用武之地?
- 复杂的Value类型
Redis有丰富的数据结构,并不是简单的Key-Value型的NoSQL,这也是Redis备受欢迎的原因,其中常用的Hash、Zset、List等结构在value很大时,CURD的操作会很复杂,
如果采用多线程模式在进行相同key操作时就需要加锁来进行同步,这样就可能造成死锁问题。
这时候你会问:将key做hash分配给相同的线程来处理就可以解决呀,确实是这样的,这样的话就需要在Redis中增加key的hash处理以及多线程负载均衡的处理,
从而Redis的实现就成为多线程模式了,好像确实也没有什么问题,但是Antirez并没有这么做,大神这么做肯定是有原因的,果不其然,我们见到了集群化的Redis;
- 集群化扩展
目前的机器都是多核的,但是内存一般128GB/64GB算是比较普遍了,但是Redis在使用内存60%以上稳定性就不如50%的性能了(至少笔者在使用集群化Redis时超过70%时,集群failover的频率会更高),
因此在数据较大时,当Redis作为主存,就必须使用多台机器构建集群化的Redis数据库系统,这样以来Redis的单线程模式又被集群化的处理所扩展了;
- 软件工程角度
单线程无论从开发和维护都比多线程要容易非常多,并且也能提高服务的稳定性,无锁化处理让单线程的Redis在开发和维护上都具备相当大的优势;
- 类Redis系统:
Redis的设计秉承实用第一和工程化,虽然有很多理论上优秀的设计模式,但是并不一定适用自己,软件设计过程就是权衡的过程。
业内也有许多类Redis的NoSQL,比如360基础架构组开发的Pika系统,基于SSD和Rocks存储引擎,上层封装一层协议转换,来实现Redis所有功能的模拟,感兴趣的可以研究和使用。
2.单线程的文件事件和时间事件
Redis作为单线程服务要处理的工作一点也不少,Redis是事件驱动的服务器,主要的事件类型就是:
- 文件事件类型
- 时间事件类型
其中,时间事件是理解单线程逻辑模型的关键。
- 时间事件
Redis的时间事件分为两类:
- 定时事件:任务在等待指定大小的等待时间之后就执行,执行完成就不再执行,只触发一次;
- 周期事件:任务每隔一定时间就执行,执行完成之后等待下一次执行,会周期性的触发;
- 周期性时间事件
Redis中大部分是周期事件,周期事件主要是服务器定期对自身运行情况进行检测和调整,从而保证稳定性HA,这项工作主要是ServerCron函数来完成的,周期事件的内容主要包括:
- 删除数据库的key
- 触发RDB和AOF持久化
- 主从同步
- 集群化保活
- 关闭清理死客户端链接
- 统计更新服务器的内存、key数量等信息
可见 Redis的周期性事件虽然主要处理辅助任务,但是对整个服务的稳定运行,起到至关重要的作用。
- 时间事件的无序链表
Redis的每个时间事件分为三个部分:
- 事件ID 全局唯一 依次递增
- 触发时间戳 ms级精度
- 事件处理函数 事件回调函数
时间事件Time_Event结构:

Redis的时间事件是存储在链表中的,并且是按照ID存储的,新事件在头部旧事件在尾部,但是并不是按照即将被执行的顺序存储的。
也就是第一个元素50ms后执行,但是第三个可能30ms后执行,这样的话Redis每次从链表中获取最近要执行的事件时,都需要进行O(N)遍历,
显然性能不是最好的,最好的情况肯定是类似于最小栈MinStack的思路,然而Antirez大佬却选择了无序链表的方式。
选择无序链表也是适合Redis场景的,因为Redis中的时间事件数量并不多,即使进行O(N)遍历性能损失也微乎其微,也就不必每次插入新事件时进行链表重排。
Redis存储时间事件的无序链表如图:

3.单线程下事件的调度和执行
Redis服务中因为包含了时间事件和文件事件,事情也就变得复杂了,服务器要决定何时处理文件事件、何时处理时间事件、并且还要明确知道处理时间的时间长度,因此事件的执行和调度就成为重点。
Redis服务器会轮流处理文件事件和时间事件,这两种事件的处理都是同步、有序、原子地执行的,服务器也不会终止正在执行的事件,也不会对事件进行抢占。
这个调度过程还是比较有意思的,我们来一起看下:
- 事件执行调度规则
文件事件是随机出现的,如果处理完成一次文件事件后,仍然没有其他文件事件到来,服务器将继续等待,
在文件事件的不断执行中,时间会逐渐向最早的时间事件所设置的到达时间逼近并最终来到到达时间,
这时服务器就可以开始处理到达的时间事件了。由于时间事件在文件事件之后执行,并且事件之间不会出现抢占,
所以时间事件的实际处理时间一般会比设定的时间稍晚一些。
- 事件执行调度的代码实现
Redis源码ae.c中对事件调度和执行的详细过程在aeProcessEvents中实现的,具体的代码如下:
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
, numevents;
if (!(flags & AE_TIME_EVENTS) && !(flags & AE_FILE_EVENTS))
;
||
((flags & AE_TIME_EVENTS) && !(flags & AE_DONT_WAIT))) {
int j;
aeTimeEvent *shortest = NULL;
struct timeval tv, *tvp;
if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT))
shortest = aeSearchNearestTimer(eventLoop);
if (shortest) {
long now_sec, now_ms;
aeGetTime(&now_sec, &now_ms);
tvp = &tv;
long long ms =
(shortest->when_sec - now_sec)* +
shortest->when_ms - now_ms;
) {
tvp->tv_sec = ms/;
tvp->tv_usec = (ms % )*;
} else {
tvp->tv_sec = ;
tvp->tv_usec = ;
}
} else {
if (flags & AE_DONT_WAIT) {
tv.tv_sec = tv.tv_usec = ;
tvp = &tv;
} else {
tvp = NULL; /* wait forever */
}
}
numevents = aeApiPoll(eventLoop, tvp);
if (eventLoop->aftersleep != NULL && flags & AE_CALL_AFTER_SLEEP)
eventLoop->aftersleep(eventLoop);
; j < numevents; j++) {
aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];
int mask = eventLoop->fired[j].mask;
int fd = eventLoop->fired[j].fd;
;
int invert = fe->mask & AE_BARRIER;
if (!invert && fe->mask & mask & AE_READABLE) {
fe->rfileProc(eventLoop,fd,fe->clientData,mask);
fired++;
}
if (fe->mask & mask & AE_WRITABLE) {
if (!fired || fe->wfileProc != fe->rfileProc) {
fe->wfileProc(eventLoop,fd,fe->clientData,mask);
fired++;
}
}
if (invert && fe->mask & mask & AE_READABLE) {
if (!fired || fe->wfileProc != fe->rfileProc) {
fe->rfileProc(eventLoop,fd,fe->clientData,mask);
fired++;
}
}
processed++;
}
}
/* Check time events */
if (flags & AE_TIME_EVENTS)
processed += processTimeEvents(eventLoop);
return processed;
}
- 事件执行和调度的伪码
上面的源码可能读起来并不直观,在《Redis设计与实现》书中给出了伪代码实现:
def aeProcessEvents()
#获取当前最近的待执行的时间事件
time_event = aeGetNearestTimer()
#计算最近执行事件与当前时间的差值
remain_gap_time = time_event.when - uinx_time_now()
#判断时间事件是否已经到期 则重置 马上执行
:
remain_gap_time =
#阻塞等待文件事件 具体的阻塞等待时间由remain_gap_time决定
#如果remain_gap_time为0 那么不阻塞立刻返回
aeApiPoll(remain_gap_time)
#处理所有文件事件
ProcessAllFileEvent()
#处理所有时间事件
ProcessAllTimeEvent()
可以看到Redis服务器是边阻塞边执行的,具体的阻塞事件由最近待执行时间事件的等待时间决定的,在阻塞该最小等待时间返回之后,开始处理事件任务,
并且先执行文件事件、再执行时间事件,所有即使时间事件要即刻执行,也需要等待文件事件完成之后再执行时间事件,所以比预期的稍晚。
- 事件调度和执行流程

4.参考资料
- 深入了解Redis之事件原理和实现
- 《Redis设计与实现》黄健宏
理解Redis的单线程模式的更多相关文章
- 理解Redis的反应堆模式
1. Redis的网络模型 Redis基于Reactor模式(反应堆模式)开发了自己的网络模型,形成了一个完备的基于IO复用的事件驱动服务器,但是不由得浮现几个问题: 为什么要使用Reactor模式呢 ...
- 理解Redis单线程运行模式
本文首发于:https://mp.weixin.qq.com/s/je4nqCIq6ARhSV2V5Ymmtg 微信公众号:后端技术指南针 0.概述 通过本文将了解到以下内容: Redis服务器采用单 ...
- 为什么说Redis是单线程的以及Redis为什么这么快!(转)
文章转自https://blog.csdn.net/chenyao1994/article/details/79491337 一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到 ...
- Redis与Reactor模式
Redis与Reactor模式 Jan 9, 2016 近期看了Redis的设计与实现,这本书写的还不错,看完后对Redis的理解有非常大的帮助. 另外,作者整理了一份Redis源代码凝视,大家能够c ...
- 《为什么说Redis是单线程的以及Redis为什么这么快!》
为什么说Redis是单线程的以及Redis为什么这么快! 一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”.什么是“热数据和冷数据”,复杂一点的会问到缓 ...
- 为什么说Redis是单线程的?
一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”.什么是“热数据和冷数据” ,复杂一点的会问到缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级等问题,这些看 ...
- 为什么说Redis是单线程的以及Redis为什么这么块
一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”.什么是“热数据和冷数据”,复杂一点的会问到缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级等问题,这些看似 ...
- 为什么说Redis是单线程的以及Redis为什么这么快!(转)
一.前言 近乎所有与Java相关的面试都会问到缓存的问题,基础一点的会问到什么是“二八定律”.什么是“热数据和冷数据”,复杂一点的会问到缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级等问题,这些看似 ...
- Redis集群模式介绍
前言: 一.为什么要使用redis 1,解决应用服务器的cpu和内存压力 2,减少io的读操作,减轻io的压力(内存中读取) 3,关系型数据库扩展性,不强,难以改变表的结构 二.优点 1,nosql数 ...
随机推荐
- CSPS模拟测试59
这场考得我心态爆炸......... 开场T1只会$n^{2}$,然后发现bfs时每个点只需要被更新一次,其他的更新都是没用的. 也就是说,我们可以只更新还没被更新的点? 于是我先YY了一个链表,发现 ...
- javaScript中this到底指向谁
1.前言 在JavaScript中,this的指向一直是大多数初学者的易错点,总是搞不清楚this到底指向谁,而在求职面试中,this的指向问题往往又是高频考点.本篇博文就来总结一下在JavaScri ...
- T1
老师的作业提示里说有难题,也有水题,果真很水... 单纯的模拟加暴力 #include<iostream> using namespace std; int n; ; int cow[ma ...
- MapReduce任务提交源码分析
为了测试MapReduce提交的详细流程.需要在提交这一步打上断点: F7进入方法: 进入submit方法: 注意这个connect方法,它在连接谁呢?我们知道,Driver是作为客户端存在的,那么客 ...
- JVM 中你不得不知的一些参数
有的同学虽然写了一段时间 Java 了,但是对于 JVM 却不太关注.有的同学说,参数都是团队规定好的,部署的时候也不用我动手,关注它有什么用,而且,JVM 这东西,听上去就感觉很神秘很高深的样子,还 ...
- MySQL 执行计划详解
我们经常使用 MySQL 的执行计划来查看 SQL 语句的执行效率,接下来分析执行计划的各个显示内容. EXPLAIN SELECT * FROM users WHERE id IN (SELECT ...
- webpack 打包优化的四种方法(多进程打包,多进程压缩,资源 CDN,动态 polyfill)
如今,webpack 毫无疑问是前端构建领域里最耀眼的一颗星,无论你前端走哪条路线,都需要有很强的webpack 知识.webpack 的基本用法这里就不展开讲了.主要探讨一下如何提高 webpack ...
- 使用 Zephir 轻松构建 PHP 扩展
简介: 通过 PHP 扩展, 我们可以在 php 代码中使用一些特定的方法(大部分的 php 扩展都是用 C 写的). 比如,在 PHP 中需要与 SQLite3 交互,我们可以自己写方法与之进行连接 ...
- hdu 1533 Going Home (KM)
Going HomeTime Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 【Java】面向对象之多态
生活中,比如动物中跑的动作,小猫.小狗和大象,跑起来是不一样的.再比如飞的动作,昆虫.鸟类和飞机,飞起来也是不一样的.可见,同一类的事物通过不同的实际对象可以体现出来的不同的形态.多态,描述的就是这样 ...