题目

题目里要求的是:

\[\sum_{k=0}^n f(k) \times X^k \times \binom nk
\]

这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项式转成下降幂多项式。这一步可以做到\(O(mlogm)\),(模板)但是这题不需要,这个后面再说。假设现在已经得出了f的下降幂多项式的系数\(b_i\),则:

\[\begin{align}
f(k)&=\sum_{i=0}^m b_ik^{\underline i}\\
ans&=\sum_{k=0}^n f(k) \times X^k \times \binom nk\\
&=\sum_{k=0}^n \sum_{i=0}^m b_i k^{\underline i} X^k\frac{n!}{(n-k)!k!}\\
&=\sum_{i=0}^m b_i \sum_{k=i}^n \frac{k!}{(k-i)!}\cdot \frac{n!}{(n-k)!k!}(交换求和符号,k从i开始因为k<i时下降幂的值为0)\\
&=\sum_{i=0}^m b_i \sum_{k=i}^n \frac{(n-i)!}{(k-i)!(n-k)!}\cdot X^{k-i}\cdot 1^{n-k}X^i\cdot n^{\underline i}\\
&=\sum_{i=0}^m b_i \sum_{k=i}^n \binom{n-i}{k-i}\cdot X^{k-i}\cdot 1^{n-k}X^i\cdot n^{\underline i}\\
&=\sum_{i=0}^m b_i (1+x)^{n-i}X_i\cdot n^{\underline i}(二项式定理,这种题的套路)\\
\end{align}
\]

\(k^{\underline i}\)表示k的i次下降幂。所以只要求出\(b_i\)就能\(O(m)\)完成计算。


众所周知 \(x^n=\sum_{i=0}^n S2(n,i) x^{\underline i}\)

所以

\[\begin{align}
\sum_{i=0}^m a_i x^i&=\sum_{i=0}^m a_i \sum_{j=0}^i S2(i,j) x^{\underline j}\\
&=\sum_{i=0}^m x^{\underline i} \sum_{j=i}^m a_j S2(j,i)(交换求和符号)\\

\end{align}
\]

所以\(b_i=\sum_{j=i}^m a_j S2(j,i)\)。

第二类斯特林数可以暴力\(O(m^2)\)递推:\(S2(n,m)=S2(n-1,m-1)+m \cdot S2(n-1,m)\)。

总时间复杂度\(O(m^2)\)。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back using namespace std; LL n,x,MOD,m,a[1010],b[1010],s2[1010][1010],ans=0; LL qpow(LL xx,LL a)
{
LL res=xx,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} int main()
{
cin>>n>>x>>MOD>>m;
rep(i,m+1) scanf("%lld",&a[i]);
s2[0][0]=s2[1][1]=1;
for(int i=2;i<=m+3;++i) repn(j,i) s2[i][j]=(s2[i-1][j-1]+s2[i-1][j]*(LL)j)%MOD;
rep(i,m+1) for(int j=i;j<=m;++j) (b[i]+=a[j]*s2[j][i])%=MOD;
LL mul=1;
rep(i,m+1)
{
(ans+=b[i]*qpow(1+x,n-i)%MOD*qpow(x,i)%MOD*mul)%=MOD;
(mul*=(n-i))%=MOD;
}
cout<<ans<<endl;
return 0;
}

[题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂的更多相关文章

  1. 洛谷P6623——[省选联考 2020 A 卷] 树

    传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...

  2. 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)

    题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...

  3. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  4. luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

    luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...

  5. 洛谷 P7520 - [省选联考 2021 A 卷] 支配(支配树)

    洛谷题面传送门 真·支配树不 sb 的题. 首先题面已经疯狂暗示咱们建出支配树对吧,那咱就老老实实建呗.由于这题数据范围允许 \(n^2\)​ 算法通过,因此可以考虑 \(\mathcal O(n^2 ...

  6. 洛谷 P7515 - [省选联考 2021 A 卷] 矩阵游戏(差分约束)

    题面传送门 emmm--怎么评价这个题呢,赛后学完差分约束之后看题解感觉没那么 dl,可是现场为啥就因为种种原因想不到呢?显然是 wtcl( 先不考虑"非负"及" \(\ ...

  7. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

  8. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  9. 洛谷 P7516 - [省选联考 2021 A/B 卷] 图函数(Floyd)

    洛谷题面传送门 一道需要发现一些简单的性质的中档题(不过可能这道题放在省选 D1T3 中偏简单了?) u1s1 现在已经是 \(1\text{s}\)​ \(10^9\)​ 的时代了吗?落伍了落伍了/ ...

随机推荐

  1. SP8496 NOSQ - No Squares Numbers 题解

    To SP8496 这道题可以用到前缀和思想,先预处理出所有的结果,然后 \(O(1)\) 查询即可. 注意: 是不能被 \(x^2(x≠1)\) 的数整除的数叫做无平方数. \(d\) 可以为 \( ...

  2. NFS配置-实现多服务器共享目录

    NFS网络文件系统 为什么要用NFS? 前端所有的应用服务器接收到用户上传的图片.文件.视频,都会统一放到后端的存储上.共享存储的好处:方便数据的查找与取出,缺点:存储服务器压力大,坏了丢失全部数据. ...

  3. 在.NET 6.0中配置WebHostBuilder

    大家好,我是张飞洪,感谢您的阅读,我会不定期和你分享学习心得,希望我的文章能成为你成长路上的垫脚石,让我们一起精进. 在阅读第4章"使用Kestrel配置和定制HTTPS"时,您可 ...

  4. Vue 父组件传递给子组件,设置默认值为数组或者对象时

    在vue 父子组件传参过程中,传递对象或者数组时,设置默认值为{}或者[] 错误写法: props: { pos: { type: [Object, Array], default: []//这是错误 ...

  5. YII自定义第三方扩展

    cat.php <?php /** * Created by PhpStorm. * Date: 2016/5/25 * Time: 15:23 */ namespace vendor\anim ...

  6. docker + Umami + Postgresql 网站访问分析

    1 # docker + Umami + Postgresql 2 # 官方安装文档:https://umami.is/docs/install 3 # 一.创建数据库 4 # 1.创建用户 5 CR ...

  7. LyScript 实现对内存堆栈扫描

    LyScript插件中提供了三种基本的堆栈操作方法,其中push_stack用于入栈,pop_stack用于出栈,而最有用的是peek_stack函数,该函数可用于检查指定堆栈位置处的内存参数,利用这 ...

  8. Spring源码 11 IOC refresh方法6

    参考源 https://www.bilibili.com/video/BV1tR4y1F75R?spm_id_from=333.337.search-card.all.click https://ww ...

  9. 面试突击74:properties和yml有什么区别?

    properties 和 yml 都是 Spring Boot 支持的两种配置文件,它们可以看作是 Spring Boot 在不同时期的两款"产品".在 Spring Boot 时 ...

  10. java学习第一天.day03

    运行程序数据存储 ASCII Unicode(万国码) A在码表的顺序是65,a在码表的顺序是97,1代表49 变量 定义一个变量声明数据类型是开辟一个空间存储数据,java对数据的定义比较严格,比如 ...