[HDU3976]Electric resistance(电阻)(信竞&物竞)(高斯消元)
题面
Problem Description
Now give you a circuit who has n nodes (marked from 1 to n) , please tell abcdxyzk the equivalent resistance of the circuit between node 1 and node n. You may assume that the circuit is connected. The equivalent resistance of the circuit between 1 and n is that, if you only consider node 1 as positive pole and node n as cathode , all the circuit could be regard as one resistance . (It's important to analyse complicated circuit ) At most one resistance will between any two nodes.
给你一个无向连通图(电路图)
每一条边的边权为这条边的电阻,点1是正极,点n是负极。
求整个电路的等效电阻。
Input
In the first line has one integer T indicates the number of test cases. (T <= 100)
T组数据
Each test first line contain two number n m(1<n<=50,0<m<=2000), n is the number of nodes, m is the number of resistances.Then follow m lines ,each line contains three integers a b c, which means there is one resistance between node a and node b whose resistance is c. (1 <= a,b<= n, 1<=c<=10^4) You may assume that any two nodes are connected!
n m
u1 v1 w1(R)
......
um vm wm(R)
Output
for each test output one line, print "Case #idx: " first where idx is the case number start from 1, the the equivalent resistance of the circuit between 1 and n. Please output the answer for 2 digital after the decimal point .
Case #idx: answer_x(double)
......
题解
不妨先随便假设电源电压为一个值U,已知量为边的电阻,我们要设未知量来高斯消元解方程。
设每个点的电流有点麻烦,我们设电压。
由于电压指导体两端的电压,不能说某个点的电压,于是我们设U[i]为 以i和n为两端的电路的电压。
显然,U[1] = U,U[n] = 0,U[i]是个未知数。
若电流从u流到v,那么U[u]一定大于U[v]。
由于流入一个点 i 的电流等于流出一个点的电流,
即
由于
那么合并一下,。
这就是方程组中的一个方程,用高斯消元可以把U[...]都求出来,可以证明一定有解。
最后通过点1连接的电阻算出干路电流,再通过欧姆定律算出等效电阻。
这里有一份很不错的高斯消元板子。
CODE
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#define LL long long
#define MAXN 105
#define DB double
#define lowbit(x) ((-x & x))
#define rg register
#define eps (1e-8)
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
LL n;
LL m,i,j,s,o,k;
bool cmp(DB a,DB b) {
if(a-b>eps) return 1;
if(a-b<-eps) return -1;
return 0;
}
bool gauss(int n,DB a[][MAXN]) {
bool flag=1;
for(int i = 1;i <= n;i ++) {
int maxi = i;
for(int j = i+1;j <= n;j ++) {
if(cmp(a[maxi][i],a[j][i]) == -1) {
maxi = j;
}
}
swap(a[maxi],a[i]);
if(cmp(a[i][i],0.0) == 0) {
flag = 0;continue;
}
for(int j = 1;j <= n;j ++) {
if(i==j || cmp(a[j][i],0) == 0) continue;
for(int k = i+1;k <= n+1;k ++) {
a[j][k] -= a[i][k] * a[j][i]/a[i][i];
}
a[j][i] = 0;
}
}
return flag;
}
int gauss_final(int n,DB a[][MAXN],DB *b) {
if(!gauss(n,a)) {
for(int i = 1;i <= n;i ++) {
bool flag = 0;
for(int j = 1;j <= n;j ++) {
if(cmp(a[i][j],0) != 0) {
flag = 1;
}
}
if(!flag && cmp(a[i][n+1],0) != 0) return -1;
}
return 0;
}
for(int i = 1;i <= n;i ++) {
b[i] = a[i][n+1]/a[i][i];
}
return 1;
}
DB a[MAXN][MAXN];
DB U[MAXN];
DB g[MAXN];
queue<int> q;
int main() {
int T = read(),idx=0;
while(T --) {
n = read();m = read();
memset(a,0,sizeof(a));
memset(U,0,sizeof(U));
memset(g,0,sizeof(g));
U[1] = 100.0;U[n] = 0;
while(!q.empty()) q.pop();
for(int i = 1;i <= m;i ++) {
s = read();o = read();k = read();
if(s>o) swap(s,o);
int t = o;
if(s == 1) q.push(o),g[o] = k*1.0;
if(s!=1&&s!=n) {
a[s-1][s-1] += 1.0/(DB)k;
if(t!=1&&t!=n) {
a[s-1][t-1] -= 1.0/(DB)k;
}
else if(t==1) {
a[s-1][n-1] += 100.0/(DB)k;
}
}
if(t!=1&&t!=n) {
a[t-1][t-1] += 1.0/(DB)k;
if(s!=1&&s!=n) {
a[t-1][s-1] -= 1.0/(DB)k;
}
else if(s==1) {
a[t-1][n-1] += 100.0/(DB)k;
}
}
}
gauss_final(n-2,a,U+1);
DB I = 0.0;
while(!q.empty()) {
int v = q.front();
q.pop();
I += (U[1] - U[v]) / g[v];
}
printf("Case #%d: %.2lf\n",++idx,U[1]/I);
}
return 0;
}
[HDU3976]Electric resistance(电阻)(信竞&物竞)(高斯消元)的更多相关文章
- BZOJ 2419: 电阻 [高斯消元 物理]
http://www.lydsy.com/JudgeOnline/problem.php?id=2419 题意: n个点m个电阻构成一张图,求1到n的等效电阻 第一节课看一道题弃疗,于是来做这道物理题 ...
- POJ 3532 Resistance(高斯消元+基尔霍夫定理)
[题目链接] http://poj.org/problem?id=3532 [题目大意] 给出n个点,一些点之间有电阻相连,求1~n的等效电阻 [题解] 有基尔霍夫定理:任何一个点(除起点和终点)发出 ...
- HDU5006 Resistance(高斯消元)
给你一个复杂的网路图,然后告诉你s,t,求s,t的等效电阻.方法是设s的电势为1,t的电势为0.然后对于其它的每个点x,满足的是sigma(ux-uy)/R(x,y)(即对每个与x相连的节点y,电势差 ...
- 【期望DP+高斯消元】BZOJ3270-博物馆
[题目大意] 有m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间.两个男孩现在分别处在a,b两个房间,每一分钟有Pi 的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi 的 ...
- HDU 3976 Electric resistance (高斯消元法)
Electric resistance Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- [Gauss]HDOJ3976 Electric resistance
题意: 一看图就明白了 要求的是1与n端点间的等效电阻 重点在于转化成考虑电流 根据KCL定理:在任一瞬间流出(流入)该节点的所有电流的代数和恒为零 U = IR 可以令1点的电势为零 那么n点的电势 ...
- 友链&&日记
上面友链,下面日记 友人链 最喜欢galgameの加藤聚聚 初三一本&&\(ACG\)姿势比我还丰厚的yx巨巨 更喜欢galgame的shadowice czx ZigZag胖胖 文文 ...
- poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...
- NOI 国家集训队论文集
鉴于大家都在找这些神牛的论文.我就转载了这篇论文合集 国家集训队论文分类 组合数学 计数与统计 2001 - 符文杰:<Pólya原理及其应用> 2003 - 许智磊:<浅谈补集转化 ...
随机推荐
- 基于BPM的低代码开发平台应具备什么功能
一个BPM平台应该具备什么样的功能 用户在选型BPM软件的时候往往不知道该关注哪些功能,什么样的BPM软件能满足国内企业应用需求,笔者从多年BPM研发和实施经验提炼了中国特色BPM应该具备的功能 ...
- 【python基础】第11回 数据类型内置方法 02
本章内容概要 列表内置方法 字典内置方法 元组内置方法 集合内置方法 可变类型与不可变类型 本章内容详细 1.列表内置方法 list 列表在调用内置方法之后不会产生新的值 1.1 统计列表中的数据值的 ...
- cmd命令与bat编程
命令解压缩文件 winrar 命令行解压文件 winrar x 要解压的文件 要解压到的路径 (保存压缩文件内的目录结果) 直接覆盖 -o+ 覆盖已存在文件 在不提示 ...
- python小题目练习(四)
题目:JAVA和Python实现冒泡排序 实现代码: # Java实现对数组中的数字进行冒泡排序scoreList = [98, 87, 89, 90, 69, 50]temp = 0for i in ...
- 【Java面试】RDB 和 AOF 的实现原理、优缺点
Hi,大家好,我是Mic. 一个工作了5年的粉丝私信我,最近面试碰到很多Redis相关的问题. 其中一个面试官问他Redis里面的持久化机制,没有回答得很好. 希望我帮他系统回答一下. 关于Redis ...
- C#.NET笔试题-高级
1.说说什么是架构模式. 1,分层. 2,分割. 分层是对网站进行横向的切分,那么分割就是对网站进行纵向的切分.将网站按照不同业务分割成小应用,可以有效控制网站的复杂程度. 3,分布式. 在大型网站中 ...
- NC24622 Brownie Slicing
NC24622 Brownie Slicing 题目 题目描述 Bessie has baked a rectangular brownie that can be thought of as an ...
- VS Code 调教日记(2022.6.26更新)
VS Code 调教日记(2022.6.26更新) 基于msys2的MinGW-w64 GCC的环境配置 下载并安装msys2 到路径...msys2安装路径...\msys64\etc\pacman ...
- Codeforces Round #791 (Div. 2) A-C
Codeforces Round #791 (Div. 2) A-C A 题目 https://codeforces.com/contest/1679/problem/A 题解 思路 知识点:数学,暴 ...
- 攻防世界MISC进阶区 52-55
52.Excaliflag 得到一张png,扔进stegsolve中查看,找到flag 53.Just-No-One 得到一个exe,运行后居然是一个安装程序,看了一下没什么问题,扔进ida pro中 ...