最佳买卖股票时机含冷冻期

力扣题目链接(opens new window)

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例:

  • 输入: [1,2,3,0,2]
  • 输出: 3
  • 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

本题在买卖II的基础上多了一个条件:即卖出股票后的一天不能交易(冷冻期)

我们在分析买卖II时有:持有不持有 两种状态,并且这两种状态中又细分为 当天买入/卖出 和 前一天买入/卖出

因为本题加了冷冻期,所以状态会有不同,大体上可以分为:持有股票不持有股票处于冷冻期三大类

五步走

1、确定dp数组含义

持有股票可以视为状态1(今天买入或者前一天买入,因为引入了冷冻期,其中还有细分情况后面说)

基于此,我觉得买卖II的状态也是可以缩减的(但这么做可能就不够直观了)

因为有冷冻期限制卖出的操作,所以不持有股票时还是要细分为两种情况

保持之前不持有股票的状态视为状态2

今天卖出股票视为状态3

最后,也是新增的一个状态,即卖出股票后的冷冻期,视为状态4

综上,本题一共有以下四种状态:

状态1---持有股票(j = 0)

不持有股票
状态2---保持不持有状态(j = 1)
状态3---今天卖掉股票(j = 2)
状态4---冷冻期(j = 3)

买卖II一样,我们仍需要使用二维dp数组dp[i][j]来表示状态:代表第i天某种状态下得到的最大收益

2、确定递推公式
(1)持有(买入)股票dp[i][0](状态1)

要达到dp[i][0],可以有两个途径:今天买入股票前一天买入股票

  • 今天买入股票又分为三种情况

    • (买入)前一天是冷冻期(状态4,j = 3),即冷冻期一结束马上买入,dp[i][0] = dp[i - 1][3] - prices[i]
    • (买入)前一天是不持有股票状态(状态2,j = 1),即昨天之前就已经卖掉股票并过了冷冻期,但是还没有买入股票,今天买入dp[i][0] = dp[i - 1][1] - prices[i]

    两者取最大值max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

    • (维持状态即前一天买入股票)前一天是保持着上一天买入的状态(状态1,j = 0),并持续到今天,dp[i][0] = dp[i - 1][0]

综上,持有股票状态(状态1)的递推公式是:dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));

(2)不持有股票,保持不持有状态dp[i][1](状态2)
  • 前一天为冷冻期(状态4,j = 3),即两天之前卖掉了股票,经过一天冷冻期到今天就是不持有状态(不用再加prices),dp[i][1] = dp[i - 1][3]
  • 前一天就是不持有股票的状态(状态2,j = 1),即在昨天之前就已经卖掉股票并度过了冷冻期dp[i][1] = dp[i - 1][1]

综上,保持不持有状态(状态2)的递推公式是:dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

(3)今天卖掉股票dp[i][2](状态3)
  • 前一天为冷冻期(状态4,j = 3),即冷冻期刚结束马上又卖出dp[i][2] = dp[i - 1][3] + prices[i]
  • 前一天为持有股票状态(状态1,j = 0),dp[i][2] = dp[i - 1][0] + prices[i]

综上,今天卖掉股票(状态3)的递推公式是:dp[i][2] = max(dp[i - 1][3] + prices[i], dp[i - 1][0] + prices[i]);

综上,今天卖掉股票(状态3)的递推公式是:dp[i][2] = dp[i - 1][0] + prices[i];

处于冷冻期就表明之前的一天一定卖出了股票,因此卖掉股票(即状态3)的前置状态不可能是冷冻期(状态4),刚卖完股票还没买呢没东西可卖

(4)冷冻期dp[i][3]

冷冻期的前置状态只可能是前一天卖出股票(状态3),dp[i][3] = dp[i - 1][2]

总结一下上面三大类,四种状态

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
//dp[i][2] = max(dp[i - 1][3] + prices[i], dp[i - 1][0] + prices[i]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];

这就是全部状态的递推公式

3、初始化dp数组

有以下几种情况需要进行初始化

(1)第0天买入股票(状态1)(一定是买入而不是持有,因为第0天不会有前一天的状态延续)

这种情况下肯定初始金钱为0,那么dp[0][0] = -prices[0]

(2)第0天保持不持有状态(状态2)

要找的是dp[0][1]的情况,要在i等于1时讨论,即dp[1][1] = max(dp[0][1], dp[0][3]);

此时dp[0][1]要取0

dp[1][1]指的是第1天保持不持有状态,要在上述二者中取一个最大值

理解1:

那肯定是要使dp[0][3]更大一些才对啊,因为这是冷冻期状态,意味着已经卖过一次股票,手里肯定有钱

故为了不影响dp[0][3]dp[0][1]要取0

理解2:

第0天保持不持有状态 和 第0天冷冻期状态 都是 第1天保持不持有状态 的前置状态,既然最终目的都是要让第1天保持不持有状态,那么其实dp[0][3]dp[0][1]都可以取0,这也解释了dp[0][3]应该初始化为0的原因

(3)第0天卖出股票(状态3)

要找的是dp[0][2]的情况,也要在i等于1时讨论,结果与上面讨论状态2第0天初始化是同理的,dp[0][2]也应该取0

此外,dp[0][3]也初始化为0,见理解2↑

4、确定遍历顺序

从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

代码

class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size() == 0) return 0;
//定义dp数组
vector<vector<int>> dp(prices.size(), vector<int>(4, 0)); //初始化
dp[0][0] = -prices[0]; //遍历dp数组
for(int i = 1; i < prices.size(); ++i){
//买入股票:
//维持前一天买入股票的状态
//前一天是冷冻期(状态4,j = 3),冷冻期一结束马上买入
//前一天是不持有股票状态(状态2,j = 1),昨天之前就已经卖掉股票并过了冷冻期,但是还没有买入股票,今天买入
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
//不持有股票
//前一天为冷冻期(状态4,j = 3),两天之前卖掉了股票,经过一天冷冻期到今天
//前一天就是不持有股票的状态,昨天之前就已经卖掉股票并度过了冷冻期
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];//前一天为持有股票状态(状态1,j = 0)
dp[i][3] = dp[i - 1][2];//前一天卖出股票(状态3)
}
//状态2、3、4都有可能是最大值
return max(dp[prices.size() - 1][3], max(dp[prices.size() - 1][1], dp[prices.size() - 1][2]));
}
};

状态2---保持不持有状态(已经卖掉股票)

状态3---今天卖掉股票

状态4---冷冻期(卖掉股票才可能进入冷冻期)

为什么返回的是状态状态2、3、4中的最大值,因为这三个状态都卖出了股票,最后卖出股票才有可能得到最大收益

至于为什么状态2、3单独取max?其实无所谓顺序,只是max一次只能输入两个比较值所以要这样写

买卖股票的最佳时机含手续费

力扣题目链接(opens new window)

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

  • 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
  • 输出: 8

解释: 能够达到的最大利润:

  • 在此处买入 prices[0] = 1
  • 在此处卖出 prices[3] = 8
  • 在此处买入 prices[4] = 4
  • 在此处卖出 prices[5] = 9
  • 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

注意:

  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000

思路

与买卖II几乎一样,只是需要加入手续费的处理逻辑即可

再推导一下所有的情况吧

(1)持有股票dp[i][0]

如果是第i天买入的,那么要用没有持有该股票时有的钱减去股票的售价,即dp[i][0] = dp[i - 1][1] - prices[i]

如果是第i-1天买入的,就还是和上一题一样,状态延续到第i天即可,即dp[i][0] = dp[i - 1][0]

综上,dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);//持有

(2)不持有股票dp[i][1]

如果是第i天卖掉的,那就要用持有该股票时有的钱加上卖股票得的钱然后还要减掉手续费,即dp[i][1] = dp[i - 1][0] + prices[i] - fee

如果是第i-1天卖掉的,延续第i天的状态即可,即dp[i][1] = dp[i - 1][1]

综上,dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);//不持有

代码

class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int n = prices.size();//获取prices数组长度(天数)
vector<vector<int>> dp(n, vector<int>(2, 0));//创建dp数组
dp[0][0] -= prices[0]; //初始化
//dp[0][1] = 0; for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);//持有
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);//不持有
}
return max(dp[n - 1][0], dp[n - 1][1]);//最后一天要求把股票卖掉,返回不持有股票的最大金钱数
}
};

【LeetCode动态规划#13】买卖股票含冷冻期(状态众多,比较繁琐)、含手续费的更多相关文章

  1. Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown)

    Leetcode之动态规划(DP)专题-309. 最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown) 股票问题: 121. 买卖股票 ...

  2. Leetcode 309.最佳买卖股票时机含冷冻期

    最佳买卖股票时机含冷冻期 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格.​ 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票): 你不 ...

  3. [Leetcode] 第309题 最佳买卖股票时机含冷冻期

    一.题目描述 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 .​ 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票): 你不能同时参与 ...

  4. Java实现 LeetCode 309 最佳买卖股票时机含冷冻期

    309. 最佳买卖股票时机含冷冻期 给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 .​ 设计一个算法计算出最大利润.在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股 ...

  5. [Swift]LeetCode309. 最佳买卖股票时机含冷冻期 | Best Time to Buy and Sell Stock with Cooldown

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. leetcode题解-122买卖股票的最佳时期

    题目 leetcode题解-122.买卖股票的最佳时机:https://www.yanbinghu.com/2019/03/14/30893.html 题目详情 给定一个数组,它的第 i 个元素是一支 ...

  7. 手撕代码:leetcode 309最佳买卖股票时机含冷冻期

    转载于:https://segmentfault.com/a/1190000014746613 给定一个整数数组,其中第i个元素代表了第i天的股票价格. 设计一个算法计算出最大利润.在满足以下约束条件 ...

  8. 【LeetCode】309、最佳买卖股票时机含冷冻期

    Best Time to Buy and Sell Stock with Cooldown 题目等级:Medium 题目描述: Say you have an array for which the ...

  9. leetcode 最佳买卖股票时机含冷冻期

    这道题算是股票问题的变体之一,主要在于不限制交易次数而存在冷冻期,所以我们需要对我们的dp数组进行改变,第一维是指第几天,第二维是指是否持有股票,在这里因为不限制交易次数k,所以并未涉及第三维度. 同 ...

  10. leecode 309. 最佳买卖股票时机含冷冻期

    /***** //sell[i]表示截至第i天,最后一个操作是卖时的最大收益: //buy[i]表示截至第i天,最后一个操作是买时的最大收益: //cool[i]表示截至第i天,最后一个操作是冷冻期时 ...

随机推荐

  1. 线上Java调优-Arthas入门

    1.SSH连接目标主机,找到对应容器ID docker ps | grep eam 2.进入容器,并启用bash docker exec -it 01c6ab243ff4 /bin/bash 3.按A ...

  2. win10edge浏览器个人账户退出登录后再次登录自动登录问题

    edge浏览器退出登录后,再次点击登录以同步数据会自动登录,可查看书签等个人数据 解决方法: 先在浏览器里面退出账户. 1.设置--电子邮件和账户--管理 2.登录后--安全--安全仪表板--高级安全 ...

  3. typescript 的动态引入组件

    环境: Arco Pro + Vue3 vite自身对动态字符串形式的组件引入是有限制的, 以下写法会报错 官方文档中也对此有做说明, 只能通过固定形式去引用 以下形式不会报错, 但这种固定格式的局限 ...

  4. 不使用setTimeout的延迟执行

    function sleep(ms){ var time = new Date(); time.setTime(time.getTime() + ms); while(new Date().getTi ...

  5. ansible用authorized_key模块批量推送密钥到受控主机实现免密登录

    一,ansible的authorized_key模块的用途 用来配置密钥实现免密登录: ansible所在的主控机生成密钥后,如何把公钥上传到受控端? 当然可以用ssh-copy-id命令逐台手动处理 ...

  6. PicList 现已上架Mac App Store 分享下整个上架过程和遇到的问题

    PicList 是一款云存储/图床平台管理和文件上传工具,基于 PicGo 进行了深度二次开发,保留了 PicGo 的所有功能的同时,为相册添加了同步云端删除功能,同时增加了完整的云存储管理功能,包括 ...

  7. JUC源码学习笔记8——ConcurrentHashMap源码分析1 如何实现低粒度锁的插入,如何实现统计元素个数,如何实现并发扩容迁移

    源码基于jdk1.8 这一片主要讲述ConcurrentHashMap如何实现低粒度锁的插入,如何实现统计元素个数,如何实现并发扩容迁移 系列文章目录和关于我 一丶ConcurrentHashMap概 ...

  8. CosineWarmup理论与代码实战

    摘要:CosineWarmup是一种非常实用的训练策略,本次教程将带领大家实现该训练策略.教程将从理论和代码实战两个方面进行. 本文分享自华为云社区<CosineWarmup理论介绍与代码实战& ...

  9. Spring事务的底层原理

    1. 划分处理单元--IOC 由于spring解决的问题是对单个数据库进行局部事务处理的,具体的实现首相用spring 中的IOC划分了事务处理单元.并且将对事务的各种配置放到了ioc容器中(设置事务 ...

  10. Scanner基础用法

    Scanner基础用法 引入包java.util.Scanner 读一个单词 package charpter2; import java.util.Scanner; public class Sca ...