一、数据情况

purchase记录每个用户的购买信息;

PUT purchase
{
"mappings":{
"properties":{
"id":{
"type":"keyword"
},
"name":{
"type":"text"
},
"goods":{
"properties":{
"id":{
"type":"keyword"
},
"name":{
"type":"text"
}
}
}
}
}
}

index 三个document

PUT purchase/_doc/1
{
"id":1,
"name":"sam",
"goods":[
{"id":"g1","name":"ipad"},
{"id":"g2","name":"iphone"}
]
} PUT purchase/_doc/2
{
"id":2,
"name":"coco",
"goods":[
{"id":"g1","name":"ipad"},
{"id":"g2","name":"iphone"},
{"id":"g3","name":"ipod"}
]
} PUT purchase/_doc/3
{
"id":3,
"name":"jim",
"goods":[
{"id":"g1","name":"ipad"},
{"id":"g2","name":"iphone"},
{"id":"g3","name":"ipod"},
{"id":"g4","name":"TV"}
]
}

查看索引数据情况

POST purchase/_search
{
"query": {
"match_all": {}
}
}
{
"took":331,
"timed_out":false,
"_shards":{
"total":1,
"successful":1,
"skipped":0,
"failed":0
},
"hits":{
"total":{
"value":3,
"relation":"eq"
},
"max_score":1,
"hits":[
{
"_index":"purchase",
"_id":"1",
"_score":1,
"_source":{
"id":1,
"name":"sam",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
}
]
}
},
{
"_index":"purchase",
"_id":"2",
"_score":1,
"_source":{
"id":2,
"name":"coco",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
},
{
"id":"g3",
"name":"ipod"
}
]
}
},
{
"_index":"purchase",
"_id":"3",
"_score":1,
"_source":{
"id":3,
"name":"jim",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
},
{
"id":"g3",
"name":"ipod"
},
{
"id":"g4",
"name":"TV"
}
]
}
}
]
}
}

二、查询需求

我们需要查询购买过某种商品的顾客,一般我们可以通过ui的业务逻辑得到需要筛选的一些商品的id,由于id字段是一个不需要分词的keyword字段,所以我们会直接使用term级别的查询;


POST purchase/_search
{
"query": {
"terms": {
"goods.id": [
"g2",
"g3",
"g4"
]
}
}
}

我们可以看到查询结果中的三条记录的权重打分都是1;正常情况下购买商品越多的客户,相对来说价值更大即命中的权重得分越大;

{
"took":0,
"timed_out":false,
"_shards":{
"total":1,
"successful":1,
"skipped":0,
"failed":0
},
"hits":{
"total":{
"value":3,
"relation":"eq"
},
"max_score":1,
"hits":[
{
"_index":"purchase",
"_id":"1",
"_score":1,
"_source":{
"id":1,
"name":"sam",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
}
]
}
},
{
"_index":"purchase",
"_id":"2",
"_score":1,
"_source":{
"id":2,
"name":"coco",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
},
{
"id":"g3",
"name":"ipod"
}
]
}
},
{
"_index":"purchase",
"_id":"3",
"_score":1,
"_source":{
"id":3,
"name":"jim",
"goods":[
{
"id":"g1",
"name":"ipad"
},
{
"id":"g2",
"name":"iphone"
},
{
"id":"g3",
"name":"ipod"
},
{
"id":"g4",
"name":"TV"
}
]
}
}
]
}
}

三、terms查询分析

我们使用_explain分析一下terms查询怎么打分的;

POST purchase/_explain/3
{
"query": {
"terms": {
"goods.id": [
"g2",
"g3",
"g4"
]
}
}
}

我们可以看到elasticsearch最终使用ConstantScore查询重写的terms查询,此查询默认权重打分为1;

{
"_index" : "purchase",
"_id" : "3",
"matched" : true,
"explanation" : {
"value" : 1.0,
"description" : "ConstantScore(goods.id:g2 goods.id:g3 goods.id:g4)",
"details" : [ ]
}
}

terms提供的查询参数十分有限,其中涉及权重的只有boost,但是这只是针对整个terms查询,而不是内部的子查询;

POST purchase/_explain/3
{
"query": {
"terms": {
"goods.id": [
"g2",
"g3",
"g4"
],
"boost":2
}
}
} {
"_index" : "purchase",
"_id" : "3",
"matched" : true,
"explanation" : {
"value" : 2.0,
"description" : "ConstantScore(goods.id:g2 goods.id:g3 goods.id:g4)^2.0",
"details" : [ ]
}
}

四、构建子查询打分

match是elasticsearch提供的一个跟terms类似的查询,由于goods.id的type是keyword,所以需要给match指定一个查询时的analyzer,才能保证输入的几个id分开作为不同的查询;

POST purchase/_search
{
"query": {
"match": {
"goods.id": {
"query": "g2 g3 g4",
"analyzer":"standard"
}
}
}
} {
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 2.178501,
"hits" : [
{
"_index" : "purchase",
"_id" : "3",
"_score" : 2.178501,
"_source" : {
"id" : 3,
"name" : "jim",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
},
{
"id" : "g4",
"name" : "TV"
}
]
}
},
{
"_index" : "purchase",
"_id" : "2",
"_score" : 0.8298607,
"_source" : {
"id" : 2,
"name" : "coco",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
}
]
}
},
{
"_index" : "purchase",
"_id" : "1",
"_score" : 0.18360566,
"_source" : {
"id" : 1,
"name" : "sam",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
}
]
}
}
]
}
}

通过查看文档3的打分情况,我们可以看到elasticsearch先针对每个关键字计算打分,然后将三项打分的和作为最终的打分;在这里我们也可以看到elasticsearch内部会自动将match查询rewrite为三个子查询;

POST purchase/_explain/3
{
"query": {
"match": {
"goods.id": {
"query": "g2 g3 g4",
"analyzer":"standard"
}
}
}
} {
"_index" : "purchase",
"_id" : "3",
"matched" : true,
"explanation" : {
"value" : 2.178501,
"description" : "sum of:",
"details" : [
{
"value" : 0.18360566,
"description" : "weight(goods.id:g2 in 2) [PerFieldSimilarity], result of:",
"details" : []
},
{
"value" : 0.646255,
"description" : "weight(goods.id:g3 in 2) [PerFieldSimilarity], result of:",
"details" : []
},
{
"value" : 1.3486402,
"description" : "weight(goods.id:g4 in 2) [PerFieldSimilarity], result of:",
"details" : []
}
]
}
}

我们也可以通过bool查询,使用它的should在查询之前手动组建多个子查询;

POST purchase/_search
{
"query": {
"bool": {
"should": [
{"term": {"goods.id": "g2"}},
{"term": {"goods.id": "g3"}},
{"term": {"goods.id": "g4"}}
],
"minimum_should_match": 1
}
}
} {
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 2.178501,
"hits" : [
{
"_index" : "purchase",
"_id" : "3",
"_score" : 2.178501,
"_source" : {
"id" : 3,
"name" : "jim",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
},
{
"id" : "g4",
"name" : "TV"
}
]
}
},
{
"_index" : "purchase",
"_id" : "2",
"_score" : 0.8298607,
"_source" : {
"id" : 2,
"name" : "coco",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
}
]
}
},
{
"_index" : "purchase",
"_id" : "1",
"_score" : 0.18360566,
"_source" : {
"id" : 1,
"name" : "sam",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
}
]
}
}
]
}
}

在bool查询中,通过查看文档3的打分情况,我们可以看到elasticsearch也是先针对每个关键字计算打分,然后将三项打分的和作为最终的打分;

POST purchase/_explain/3
{
"query": {
"bool": {
"should": [
{"term": {"goods.id": "g2"}},
{"term": {"goods.id": "g3"}},
{"term": {"goods.id": "g4"}}
],
"minimum_should_match": 1
}
}
} {
"_index" : "purchase",
"_id" : "3",
"matched" : true,
"explanation" : {
"value" : 2.178501,
"description" : "sum of:",
"details" : [
{
"value" : 0.18360566,
"description" : "weight(goods.id:g2 in 2) [PerFieldSimilarity], result of:",
"details" : []
},
{
"value" : 0.646255,
"description" : "weight(goods.id:g3 in 2) [PerFieldSimilarity], result of:",
"details" : []
},
{
"value" : 1.3486402,
"description" : "weight(goods.id:g4 in 2) [PerFieldSimilarity], result of:",
"details" : []
}
]
}
}

五、控制子查询的打分

不管是elasticsearch自动组建子查询,还是我们自己手动构建子查询,elasticsearch都会针对每个查询做相关性的打分计算,这对于一般的语义化关键字搜索是没有问题的;

我们这里的搜索条件goods.id一般是没有任何语义的,不同的值打分应该是一样的;这样我们只能使用bool+constant_score+term来手动构建查询语句;

POST purchase/_search
{
"query": {
"bool": {
"should": [
{"constant_score": {"filter": {"term": {"goods.id": "g2"}}}},
{"constant_score": {"filter": {"term": {"goods.id": "g3"}}}},
{"constant_score": {"filter": {"term": {"goods.id": "g4"}}}}
],
"minimum_should_match": 1
}
}
} {
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 3.0,
"hits" : [
{
"_index" : "purchase",
"_id" : "3",
"_score" : 3.0,
"_source" : {
"id" : 3,
"name" : "jim",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
},
{
"id" : "g4",
"name" : "TV"
}
]
}
},
{
"_index" : "purchase",
"_id" : "2",
"_score" : 2.0,
"_source" : {
"id" : 2,
"name" : "coco",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
},
{
"id" : "g3",
"name" : "ipod"
}
]
}
},
{
"_index" : "purchase",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"id" : 1,
"name" : "sam",
"goods" : [
{
"id" : "g1",
"name" : "ipad"
},
{
"id" : "g2",
"name" : "iphone"
}
]
}
}
]
}
}

我们看下文档3的打分情况,每一个命中项的打分都是固定的1,最终的打分命中项的和;

POST purchase/_explain/3
{
"query": {
"bool": {
"should": [
{"constant_score": {"filter": {"term": {"goods.id": "g2"}}}},
{"constant_score": {"filter": {"term": {"goods.id": "g3"}}}},
{"constant_score": {"filter": {"term": {"goods.id": "g4"}}}}
],
"minimum_should_match": 1
}
}
} {
"_index" : "purchase",
"_id" : "3",
"matched" : true,
"explanation" : {
"value" : 3.0,
"description" : "sum of:",
"details" : [
{
"value" : 1.0,
"description" : "ConstantScore(goods.id:g2)",
"details" : [ ]
},
{
"value" : 1.0,
"description" : "ConstantScore(goods.id:g3)",
"details" : [ ]
},
{
"value" : 1.0,
"description" : "ConstantScore(goods.id:g4)",
"details" : [ ]
}
]
}
}

elasticsearch查询之keyword字段的查询相关度评分控制的更多相关文章

  1. Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试)

    Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终 ...

  2. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  3. 创建ASP.NET Core MVC应用程序(5)-添加查询功能 & 新字段

    创建ASP.NET Core MVC应用程序(5)-添加查询功能 & 新字段 添加查询功能 本文将实现通过Name查询用户信息. 首先更新GetAll方法以启用查询: public async ...

  4. Django ORM queryset object 解释(子查询和join连表查询的结果)

    #下面两种是基于QuerySet查询 也就是说SQL中用的jion连表的方式查询books = models.UserInfo.objects.all() print(type(books)) --- ...

  5. ElasticSearch 学习记录之ES查询添加排序字段和使用missing或existing字段查询

    ES添加排序 在默认的情况下,ES 是根据文档的得分score来进行文档额排序的.但是自己可以根据自己的针对一些字段进行排序.就像下面的查询脚本一样.下面的这个查询是根据productid这个值进行排 ...

  6. Elasticsearch 结构化搜索、keyword、Term查询

    前言 Elasticsearch 中的结构化搜索,即面向数值.日期.时间.布尔等类型数据的搜索,这些数据类型格式精确,通常使用基于词项的term精确匹配或者prefix前缀匹配.本文还将新版本的&qu ...

  7. [Elasticsearch] 多字段搜索 (三) - multi_match查询和多数字段 <译>

    multi_match查询 multi_match查询提供了一个简便的方法用来对多个字段执行相同的查询. NOTE 存在几种类型的multi_match查询,其中的3种正好和在“了解你的数据”一节中提 ...

  8. ElasticSearch 6.2 Mapping参数说明及text类型字段聚合查询配置

    背景: 由于本人使用的是6.0以上的版本es,在使用发现很多中文博客对于mapping参数的说明已过时.ES6.0以后有很多参数变化. 现我根据官网总结mapping最新的参数,希望能对大家有用处. ...

  9. [Elasticsearch] 多字段搜索 (三) - multi_match查询和多数字段

    multi_match查询 multi_match查询提供了一个简便的方法用来对多个字段执行相同的查询. NOTE 存在几种类型的multi_match查询,其中的3种正好和在"了解你的数据 ...

随机推荐

  1. 记 iTextSharp 提取中文的问题

    原文 问题 下面的代码中 currentText 能提取到大部分汉字 但是字体为 Non-Embedded Font: AdobeSongStd-Light(Horizontal) 的汉字提取不到 P ...

  2. 学习Linux须知1.2之Linux命令的实战

    (一)学习Linux 的准备工作 1.在线学习linux 学习网站推荐:Linux 基础入门_Linux - 蓝桥云课 (lanqiao.cn) 2.连接远程服务器学习[下文的案例就是使用xshell ...

  3. 官方出品,比 mydumper 更快的逻辑备份工具

    mysqldump 和 mydumper 是我们常用的两个逻辑备份工具. 无论是 mysqldump 还是 mydumper 都是将备份数据通过 INSERT 的方式写入到备份文件中. 恢复时,myl ...

  4. Eclipse For Java开发环境部署

    Eclipse For Java开发环境部署 1.准备工作 jdk安装包 jdk官网下载 Eclipse安装包 Eclipse官网下载 Eclipse下载时选择图中所示的国内镜像地址下载 下载后的文件 ...

  5. Flutter 实现“斑马纹”背景(需要变换颜色)

    Flutter 实现"斑马纹"背景 由于工作中项目需求,需要将H5转换为Flutter代码. 其中的斑马纹背景需要根据接口返回的颜色来渲染,所以不能只是图片形式,无法通过decor ...

  6. 我的开源之路:耗时 6 个月发布线程池框架,GitHub 1.7k Star!

    文章首发在公众号(龙台的技术笔记),之后同步到掘金和个人网站:xiaomage.info Hippo4J 线程池框架经过 6 个多月的版本迭代,2022 年春节当天成功发行了 1.0.0 RELEAS ...

  7. NLog自定义Target之MQTT

    NLog是.Net中最流行的日志记录开源项目(之一),它灵活.免费.开源 官方支持文件.网络(Tcp.Udp).数据库.控制台等输出 社区支持Elastic.Seq等日志平台输出 实时日志需求 在工业 ...

  8. 上线项目之局域网上线软件使用-----phpStudy

    上面的图片是phpStudy的软件截图.那么你在哪里会下到呢?链接: https://pan.baidu.com/s/1lvX9jY_K6gGkMOqo76p4nA 提取码: h1it 复制这段内容后 ...

  9. ArrayList和LinkedList内部是怎么实现的?他们之间的区别和优缺点?

    ArrayList 内部使用了数组形式进行了存储,利用数组的下标进行元素的访问,因此对元素的随机访问速度非常快.因为是数组,所以ArrayList在初始化的时候, 有初始大小10,插入新元素的时候,会 ...

  10. CF333E Summer Earnings

    CF333E Summer Earnings 题目 https://codeforces.com/problemset/problem/333/E 题解 思路 知识点:枚举,图论,位运算. 题目要求从 ...