(数据科学学习手札139)geopandas 0.11版本重要新特性一览
本文示例代码已上传至我的
Github仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
大家好我是费老师,就在几天前,geopandas发布了其0.11.0正式版本,距离其上一个版本(0.10.2)发布已过去大半年,在这一次的新版本更新中又为我们带来了哪些重要的新特性呢,今天的文章中我就来带大家一探究竟。
2 geopandas 0.11版本重要新特性一览
你可以在旧版本geopandas的基础上进行升级,也可以新建虚拟环境直接安装0.11.0版本,本着谨慎尝鲜的原则,我们可以使用下面的命令一口气完成新虚拟环境的创建、geopandas及其相关依赖的安装,并安装上jupyterlab作为IDE进行演示:
conda create -n geopandas-env python=3.8 -c https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main -y
conda activate geopandas-env
conda install geopandas=0.11.0 pygeos pyogrio -c conda-forge -y
pip install jupyterlab -i https://pypi.douban.com/simple/
终端里执行下列命令验证一下是否已正确安装:
python -c "import geopandas as gpd;print(gpd.__version__)"

一切准备就绪,下面我们来一览此次更新中比较重要的几个特性:
2.1 更快的矢量文件读写
新版本中为read_file()与to_file()引入了参数engine用于指定读写常见矢量文件基于的引擎,默认为原先的'fiona',可选'pyogrio',这是由geopandas开发团队维护的另一个库,可大幅度提升对常见矢量文件格式如shapefile的读写速度,以读取具有数百万个多边形的广州市全量建筑物轮廓数据为例,新的IO引擎带来近5倍的读取性能提升:

以及同样接近5倍的写出性能提升:

2.2 新增高性能矩形裁切方法clip_by_rect()
0.11中新增针对GeoSeries和GeoDataFrame的方法clip_by_rect(minx, miny, maxx, maxy),可传入目标矩形坐标范围,快速裁切出矩形范围内的矢量,譬如我们基于前面已经读入的广州市建筑物轮廓数据,通过下面的函数随机生成边长10000米的矩形范围作为裁切素材:
import numpy as np
import matplotlib.pyplot as plt
from shapely.geometry import box
# 计算得到目标GeoDataFrame范围
minx, miny, maxx, maxy = gdf.total_bounds
def generate_random_rectangle(minx, miny, maxx, maxy):
'''
研究范围内随机取得100000米边长矩形
'''
random_rectangle = [
np.random.uniform(minx, maxx - 10000),
np.random.uniform(miny, maxy - 10000)
]
return [
*random_rectangle,
random_rectangle[0] + 10000,
random_rectangle[1] + 10000,
]
调用clip_by_rect():

返回的结果与原始矢量记录数量一致,其中呈现GEOMETRYCOLLECTION EMPTY的记录说明其与目标矩形没有交集,我们利用is_empty来反向筛选出发生裁切的矢量记录:

除此之外,你还可以直接将[minx, miny, maxx, maxy]格式的输入传入经典的clip()裁切方法中,它会在底层直接调用clip_by_rect()并自动返回有效矢量裁切结果:

2.3 正确读写GIS文件中的日期时间字段
从0.11.0版本开始,geopandas在面对日期时间型字段时,无论是写出到GIS文件还是从GIS文件读入,都可以保证正确解析为日期时间型:

你可以在https://github.com/geopandas/geopandas/releases/tag/v0.11.0查看完整的版本更新说明,总体而言,这次新版本更新带来的重要更新并不太多,但都颇为实用,你可以在自己的数据上使用一番。
以上就是本文的全部内容,欢迎在评论区与我进行讨论~
(数据科学学习手札139)geopandas 0.11版本重要新特性一览的更多相关文章
- (数据科学学习手札129)geopandas 0.10版本重要新特性一览
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在前不久,我们非常熟悉的Python地理 ...
- (数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结 ...
- (数据科学学习手札143)为geopandas添加gdb文件写出功能
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,很多读者朋友跟随着我先前写作的 ...
- (数据科学学习手札140)详解geopandas中基于pyogrio的矢量读写引擎
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,前不久我在一篇文章中给大家分享 ...
- (数据科学学习手札42)folium进阶内容介绍
一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些 ...
- (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- (数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...
- (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...
随机推荐
- Prometheus介绍及docker安装方式
一.介绍 Prometheus是主要基于Go编写,最初在SoundCloud上构建的开源系统监视和警报工具包,它启发于 Google 的 borgmon 监控系统,由工作在 SoundCloud 的 ...
- 定时执行任务-springboot
定时执行任务-springboot 先看两个接口 这两个接口springboot已经帮我们封装好了,我们不需要去手动使用 TaskScheduler //任务调度者 TaskExecutor //任务 ...
- jni有关知识点总结
一.c/c++语言: 1.关于动态链接库的搜索问题: LIBRARY_PATH is used by gcc before compilation to search for directories ...
- golang内存对齐分析(转载)
问题 type Part1 struct { a bool b int32 c int8 d int64 e byte } 在开始之前,希望你计算一下 Part1 共占用的大小是多少呢? func m ...
- 使用钡铼BL102网关连接西门子S7-1200PLC 以及mosquitto服务器方法
一.软硬件描述 西门子PLC S7-1215 钡铼BL102网关 mosquitto MQTT服务器(腾讯云上搭建) 可以上网的路由器一套 二.需要使用的软件. 西门子Portal v15.1 (西门 ...
- YARN线上动态资源调优
背景 线上Hadoop集群资源严重不足,可能存在添加磁盘,添加CPU,添加节点的操作,那么在添加这些硬件资源之后,我们的集群是不能立马就利用上这些资源的,需要修改集群Yarn资源配置,然后使其生效. ...
- 攻防世界-MISC:Erik-Baleog-and-Olaf
这是攻防世界MISC高手进阶区的题目,题目如下 点击下载附件一,解压后得到一个文件,不知道是什么格式,用010editor打开,发现其为png文件,就把它的后缀改为png,然后用stegslove打开 ...
- 【PyTorch】常用的神经网络层汇总(持续补充更新)
1. Convolution Layers 1.1 nn.Conv2d (1)原型 torch.nn.Conv2d(in_channels, out_channels, kernel_size, st ...
- Idea使用入门
jeecgboot推荐使用的idea是2019,原使用的2017在自动识别maven项目上有点问题,甚至2019在一些报错下仍然可以直接运行项目 idea的安装结构(卸载细节涉及) 下载文件位 ...
- Linux系统常用命令速查手册
点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 系统信息 arch #显示机器的处理器架构(1 ...