dfs 序
dfs序可以\(O(1)\)判断书上两个点的从属关系
Tree Queries
题面翻译
给你一个以\(1\)为根的有根树.
每回询问\(k\)个节点\({v_1, v_2 \cdots v_k}\)
求出是否有一条以根节点为一端的链使得询问的每个节点到此链的距离均\(\leq 1\).
只需输出可行性, 无需输出方案.
题目描述
You are given a rooted tree consisting of\(n\)vertices numbered from\(1\)to\(n\). The root of the tree is a vertex number\(1\).
A tree is a connected undirected graph with\(n-1\)edges.
You are given\(m\)queries. The\(i\)-th query consists of the set of\(k_i\)distinct vertices\(v_i[1], v_i[2], \dots, v_i[k_i]\). Your task is to say if there is a path from the root to some vertex\(u\)such that each of the given\(k\)vertices is either belongs to this path or has the distance\(1\)to some vertex of this path.
输入格式
The first line of the input contains two integers\(n\)and\(m\)(\(2 \le n \le 2 \cdot 10^5\),\(1 \le m \le 2 \cdot 10^5\)) — the number of vertices in the tree and the number of queries.
Each of the next\(n-1\)lines describes an edge of the tree. Edge\(i\)is denoted by two integers\(u_i\)and\(v_i\), the labels of vertices it connects\((1 \le u_i, v_i \le n, u_i \ne v_i\)).
It is guaranteed that the given edges form a tree.
The next\(m\)lines describe queries. The\(i\)-th line describes the\(i\)-th query and starts with the integer\(k_i\)(\(1 \le k_i \le n\)) — the number of vertices in the current query. Then\(k_i\)integers follow:\(v_i[1], v_i[2], \dots, v_i[k_i]\)(\(1 \le v_i[j] \le n\)), where\(v_i[j]\)is the\(j\)-th vertex of the\(i\)-th query.
It is guaranteed that all vertices in a single query are distinct.
It is guaranteed that the sum of\(k_i\)does not exceed\(2 \cdot 10^5\)(\(\sum\limits_{i=1}^{m} k_i \le 2 \cdot 10^5\)).
输出格式
For each query, print the answer — "YES", if there is a path from the root to some vertex\(u\)such that each of the given\(k\)vertices is either belongs to this path or has the distance\(1\)to some vertex of this path and "NO" otherwise.
样例 #1
样例输入 #1
10 6
1 2
1 3
1 4
2 5
2 6
3 7
7 8
7 9
9 10
4 3 8 9 10
3 2 4 6
3 2 1 5
3 4 8 2
2 6 10
3 5 4 7
样例输出 #1
YES
YES
YES
YES
NO
NO
提示
The picture corresponding to the example:

Consider the queries.
The first query is\([3, 8, 9, 10]\). The answer is "YES" as you can choose the path from the root\(1\)to the vertex\(u=10\). Then vertices\([3, 9, 10]\)belong to the path from\(1\)to\(10\)and the vertex\(8\)has distance\(1\)to the vertex\(7\)which also belongs to this path.
The second query is\([2, 4, 6]\). The answer is "YES" as you can choose the path to the vertex\(u=2\). Then the vertex\(4\)has distance\(1\)to the vertex\(1\)which belongs to this path and the vertex\(6\)has distance\(1\)to the vertex\(2\)which belongs to this path.
The third query is\([2, 1, 5]\). The answer is "YES" as you can choose the path to the vertex\(u=5\)and all vertices of the query belong to this path.
The fourth query is\([4, 8, 2]\). The answer is "YES" as you can choose the path to the vertex\(u=9\)so vertices\(2\)and\(4\)both have distance\(1\)to the vertex\(1\)which belongs to this path and the vertex\(8\)has distance\(1\)to the vertex\(7\)which belongs to this path.
The fifth and the sixth queries both have answer "NO" because you cannot choose suitable vertex\(u\).
std
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+9;
int n,m;
int h[N],ver[N<<1],ne[N<<1],idx;
int dep[N],fa[N],dfn[N],sz[N],tim;
int k[N];
void add(int u,int v)
{
idx++,ver[idx] = v,ne[idx] = h[u];h[u] = idx;
}
void dfs(int u,int pre)
{
fa[u] = pre,dfn[u] = ++tim,dep[u] = dep[pre]+1,sz[u] = 1;
for(int i = h[u];i;i= ne[i])
{
int v = ver[i];
if(v == pre)continue;
dfs(v,u);
sz[u] += sz[v];
}
}
bool cmp(int x,int y){return dep[x] > dep[y];}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i < n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs(1,1);
while(m--)
{
int t;
scanf("%d",&t);
for(int i = 1;i <= t;i++)scanf("%d",&k[i]),k[i] = fa[k[i]];
sort(k+1,k+1+t,cmp);
bool flag = 1;
for(int i = 1;i < t;i++)
{
if(dfn[k[i]] > dfn[k[i+1]]+sz[k[i+1]]-1 || dfn[k[i]] < dfn[k[i+1]])
{
flag = 0;
break;
}
}
if(flag)printf("YES\n");
else printf("NO\n");
}
return 0;
}
dfs 序的更多相关文章
- BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]
3083: 遥远的国度 Time Limit: 10 Sec Memory Limit: 1280 MBSubmit: 3127 Solved: 795[Submit][Status][Discu ...
- BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1352 Solved: 780[Submit][Stat ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序
3779: 重组病毒 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 224 Solved: 95[Submit][Status][Discuss] ...
- 【BZOJ-1146】网络管理Network DFS序 + 带修主席树
1146: [CTSC2008]网络管理Network Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 3495 Solved: 1032[Submi ...
- 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组
E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- 【BZOJ-3881】Divljak AC自动机fail树 + 树链剖分+ 树状数组 + DFS序
3881: [Coci2015]Divljak Time Limit: 20 Sec Memory Limit: 768 MBSubmit: 508 Solved: 158[Submit][Sta ...
- 2016 ACM/ICPC Asia Regional Dalian Online 1010 Weak Pair dfs序+分块
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- DFS序+线段树 hihoCoder 1381 Little Y's Tree(树的连通块的直径和)
题目链接 #1381 : Little Y's Tree 时间限制:24000ms 单点时限:4000ms 内存限制:512MB 描述 小Y有一棵n个节点的树,每条边都有正的边权. 小J有q个询问,每 ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
随机推荐
- Django ORM 事务和查询优化
一.事务操作 模块 from django.db import transaction 1 开启事务:with transaction.atomic() from django.db import t ...
- 2.1pip的安装和使用
我们都知道python有海量的第三方库或者说模块,这些库针对不同的应用,发挥不同的作用.我们在实际的项目中,或多或少的都要使用到第三方库,那么如何将他人的库加入到自己的项目中内呢? 打个电话?大哥你好 ...
- ProxySQL查看所有的全局变量及更新操作
mysql> select * from global_variables; +--------------------------------------------------------- ...
- ProxySQL(4):多层配置系统
文章转载自:https://www.cnblogs.com/f-ck-need-u/p/9280793.html ProxySQL中的库 使用ProxySQL的Admin管理接口连上ProxySQL, ...
- Nginx支持web界面执行bash|python等系统命令和脚本,可以传递参数
文章转载自:https://me.jinchuang.org/archives/114.html ,有修改 步骤总结 1.安装好nginx,假设其html根路径为/usr/share/nginx/ht ...
- Redash中文版安装问题大全
Redash的安装比较复杂,由于系统环境组件版本不同,可能会出现这样那样的问题,我们把安装过程中常见问题记录如下: 1.git clone 经常提示:RPC失败,远端意外挂断.过早的文件结束符.ind ...
- Keepalived + Nginx 实现高可用 Web 负载均衡
一.Keepalived 简要介绍 Keepalived 是一种高性能的服务器高可用或热备解决方案, Keepalived 可以用来防止服务器单点故障的发生,通过配合 Nginx 可以实现 web 前 ...
- 工厂想采购一套信息化生产执行系统mes,不知道用哪家比较好?
好的信息化生产执行系统MES多的是,但是否适用于贵工厂那就不得而知了,要知道,不同行业.不同产品.不同规模的工厂用同一套系统效果呈现出来都不一样的,所以匹配很重要,个性化差异化.变化性等决定了一个工厂 ...
- POJ1651 Multiplication Puzzle (区间DP)
这道题的妙处在于把原问题看成矩阵连乘问题,求这些矩阵相乘的最小乘法次数,比如一个i*k矩阵乘一个k*j的矩阵,他们的乘法次数就是i*k*j (联想矩阵乘法的三层循环),题目说的取走一张牌,类似于矩阵相 ...
- 洛谷P4638 SHOI2011 银行 ( 最大流)
类似题目(一模一样):http://poj.org/problem?id=1149 我这里以poj1149的PIGS为例, 新建源点s和汇点t,n个顾客作为中间的点,,对于每个顾客,他可以解锁一定的猪 ...