Python脚本

#十六进制转ASCII编码
import binascii
print(binascii.unhexlify(hex(m)[2:]))
#rsa
import gmpy2
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = gmpy2.powmod(c,d,p*q)
p = gmpy2.gcd(n1,n2) #p为n1与n2的最大公因数

在线分解大整数网址,先将n转换为10进制。

http://www.factordb.com/index.php

1.两组数中e相同,n,c不同,

求出n1与n2的最大公因数即为p,之后就可以得到q和d,从而求解m。

有个题,名字为二合一,两段代码组合即为flag

import gmpy2
import binascii e = 65537
n1 = 23686563925537577753047229040754282953352221724154495390687358877775380147605152455537988563490716943872517593212858326146811511103311865753018329109314623702207073882884251372553225986112006827111351501044972239272200616871716325265416115038890805114829315111950319183189591283821793237999044427887934536835813526748759612963103377803089900662509399569819785571492828112437312659229879806168758843603248823629821851053775458651933952183988482163950039248487270453888288427540305542824179951734412044985364866532124803746008139763081886781361488304666575456680411806505094963425401175510416864929601220556158569443747
c1 = 1627484142237897613944607828268981193911417408064824540711945192035649088104133038147400224070588410335190662682231189997580084680424209495303078061205122848904648319219646588720994019249279863462981015329483724747823991513714172478886306703290044871781158393304147301058706003793357846922086994952763485999282741595204008663847963539422096343391464527068599046946279309037212859931303335507455146001390326550668531665493245293839009832468668390820282664984066399051403227990068032226382222173478078505888238749583237980643698405005689247922901342204142833875409505180847943212126302482358445768662608278731750064815 n2 = 22257605320525584078180889073523223973924192984353847137164605186956629675938929585386392327672065524338176402496414014083816446508860530887742583338880317478862512306633061601510404960095143941320847160562050524072860211772522478494742213643890027443992183362678970426046765630946644339093149139143388752794932806956589884503569175226850419271095336798456238899009883100793515744579945854481430194879360765346236418019384644095257242811629393164402498261066077339304875212250897918420427814000142751282805980632089867108525335488018940091698609890995252413007073725850396076272027183422297684667565712022199054289711
c2 = 2742600695441836559469553702831098375948641915409106976157840377978123912007398753623461112659796209918866985480471911393362797753624479537646802510420415039461832118018849030580675249817576926858363541683135777239322002741820145944286109172066259843766755795255913189902403644721138554935991439893850589677849639263080528599197595705927535430942463184891689410078059090474682694886420022230657661157993875931600932763824618773420077273617106297660195179922018875399174346863404710420166497017196424586116535915712965147141775026549870636328195690774259990189286665844641289108474834973710730426105047318959307995062 p = gmpy2.gcd(n1,n2)
q = n1 // p
phi = (p-1)*(q-1) d = gmpy2.invert(e,phi)
m = gmpy2.powmod(c1,d,n1) print(binascii.unhexlify(hex(m)[2:]))
from Crypto.Util.number import *
#from Crypto import *
from gmpy2 import *
e = 65537
n1 = 22642739016943309717184794898017950186520467348317322177556419830195164079827782890660385734113396507640392461790899249329899658620250506845740531699023854206947331021605746078358967885852989786535093914459120629747240179425838485974008209140597947135295304382318570454491064938082423309363452665886141604328435366646426917928023608108470382196753292656828513681562077468846105122812084765257799070754405638149508107463233633350462138751758913036373169668828888213323429656344812014480962916088695910177763839393954730732312224100718431146133548897031060554005592930347226526561939922660855047026581292571487960929911
c1 = 20783496698293857336536874814332143478298909263458158921937996219394332537710274205367403232708732514320611639389066082163735862761700777380840104058463579155354348061699805862524327898310127678641855434082878288432102494515720054746800718901915899330032289337375591626088347075741765461811970711245437230802260977992539476494039470906291197058928904157278989518951472020820956869920640111703645539404480108411766585348253008350928186459839844800902258719958857640914737518214153084372582797090256397642342311160693318279884649098741501937727045101809043193286750106281627732055575486406437049876043404780325249175297
n2 = 23220619839642624127208804329329079289273497927351564011985292026254914394833691542552890810511751239656361686073628273309390314881604580204429708461587512500636158161303419916259271078173864800267063540526943181173708108324471815782985626723198144643256432774984884880698594364583949485749575467318173034467846143380574145455195152793742611717169602237969286580028662721065495380192815175057945420182742366791661416822623915523868590710387635935179876275147056396018527260488459333051132720558953142984038635223793992651637708150494964785475065404568844039983381403909341302098773533325080910057845573898984314246089
c2 = 2388734117104610615397965336322770427010394901045457385681265813525613919927377026329101593125466456458558298455279547373735867558857059209388552106193860992701922188198133533021617734448419777757121245864981683037272967144385128263273077768832893421066458971220462336991927543846394930346882443809562133648552254036831400116428683310256614819789904592823224269749755689071851211338423299718494535233024741713180302310128752191665891517228327095298153012762191487987375420474346387824768879488111424751375483742118740093842208555851519823853015511213854322213521149309840133286750413391960758649357327780040081800036
for i in range(1, 3):
for j in range(i + 1, 3):
ni = eval("n" + str(i))
nj = eval("n" + str(j))
p = gcd(ni, nj)
if p > 1:
c = eval("c" + str(i))
q = ni // p
d = invert(e, (p - 1) * (q - 1))
flag = long_to_bytes(pow(c, d, ni))
print(flag)
2.已知n,e1,e2,c1,c2,求m,

考查共模攻击。

import gmpy2
import binascii n = 15944475431088053285580229796309956066521520107276817969079550919586650535459242543036143360865780730044733026945488511390818947440767542658956272380389388112372084760689777141392370253850735307578445988289714647332867935525010482197724228457592150184979819463711753058569520651205113690397003146105972408452854948512223702957303406577348717348753106868356995616116867724764276234391678899662774272419841876652126127684683752880568407605083606688884120054963974930757275913447908185712204577194274834368323239143008887554264746068337709465319106886618643849961551092377843184067217615903229068010117272834602469293571
e1 = 797
c1 = 11157593264920825445770016357141996124368529899750745256684450189070288181107423044846165593218013465053839661401595417236657920874113839974471883493099846397002721270590059414981101686668721548330630468951353910564696445509556956955232059386625725883038103399028010566732074011325543650672982884236951904410141077728929261477083689095161596979213961494716637502980358298944316636829309169794324394742285175377601826473276006795072518510850734941703194417926566446980262512429590253643561098275852970461913026108090608491507300365391639081555316166526932233787566053827355349022396563769697278239577184503627244170930 e2 = 521
c2 = 6699274351853330023117840396450375948797682409595670560999898826038378040157859939888021861338431350172193961054314487476965030228381372659733197551597730394275360811462401853988404006922710039053586471244376282019487691307865741621991977539073601368892834227191286663809236586729196876277005838495318639365575638989137572792843310915220039476722684554553337116930323671829220528562573169295901496437858327730504992799753724465760161805820723578087668737581704682158991028502143744445435775458296907671407184921683317371216729214056381292474141668027801600327187443375858394577015394108813273774641427184411887546849 s = gmpy2.gcdext(e1,e2)
m1 = gmpy2.powmod(c1,s[1],n)
m2 = gmpy2.powmod(c2,s[2],n) m = (m1*m2)%n print(binascii.unhexlify(hex(m)[2:]))
3.e=3相对于n,c来说极小,

可知是低加密指数攻击。

import gmpy2
import binascii e = 3
n = 18970053728616609366458286067731288749022264959158403758357985915393383117963693827568809925770679353765624810804904382278845526498981422346319417938434861558291366738542079165169736232558687821709937346503480756281489775859439254614472425017554051177725143068122185961552670646275229009531528678548251873421076691650827507829859299300272683223959267661288601619845954466365134077547699819734465321345758416957265682175864227273506250707311775797983409090702086309946790711995796789417222274776215167450093735639202974148778183667502150202265175471213833685988445568819612085268917780718945472573765365588163945754761
c = 150409620528139732054476072280993764527079006992643377862720337847060335153837950368208902491767027770946661 i = 0
while True:
if gmpy2.iroot((c+i*n),3)[1] == True:
m = gmpy2.iroot((c+i*n),3)[0]
break
i += 1 print(binascii.unhexlify(hex(m)[2:]))
4.e很大,故可知是低解密指数攻击
import gmpy2
import binascii
import RSAwienerHacker e = 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
n = 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
c = 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827 d = RSAwienerHacker.hack_RSA(e,n)
m = gmpy2.powmod(c,d,n) print(binascii.unhexlify(hex(m)[2:]))
5.e=1,将C转换为字符串即为m。
import binascii
c='4963654354467b66616c6c735f61706172745f736f5f656173696c795f616e645f7265617373656d626c65645f736f5f63727564656c797d' print(binascii.unhexlify(c))

CTF中RSA常见类型解法的更多相关文章

  1. 游戏开发中IIS常见支持MIME类型文件解析

    游戏开发中IIS常见支持MIME类型文件解析 .apkapplication/vnd.android .ipaapplication/vnd.iphone .csbapplication/octet- ...

  2. CTF中那些脑洞大开的编码和加密

    0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到类似这样的问题:表哥,你知道这是什么加密吗?其实CTF中脑洞密码题(非现代加密方式)一般都是各种古典密码的变形,一般出题者会对密文进 ...

  3. 要心中有“数”——C语言初学者代码中的常见错误与瑕疵(8)

    在 C语言初学者代码中的常见错误与瑕疵(7) 中,我给出的重构代码中存在BUG.这个BUG是在飞鸟_Asuka网友指出“是不是时间复杂度比较大”,并说他“第一眼看到我就想把它当成一个数学问题来做”之后 ...

  4. CTF中做Linux下漏洞利用的一些心得

    其实不是很爱搞Linux,但是因为CTF必须要接触一些,漏洞利用方面也是因为CTF基本都是linux的pwn题目. 基本的题目分类,我认为就下面这三种,这也是常见的类型. 下面就分类来说说 0x0.栈 ...

  5. CTF中编码与加解密总结

    CTF中那些脑洞大开的编码和加密 转自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到 ...

  6. [CTF]中那些脑洞大开的编码和加密

    [CTF]中那些脑洞大开的编码和加密 摘自:https://www.cnblogs.com/mq0036/p/6544055.html 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会 ...

  7. Net中的常见的关键字

    Net中的关键字有很多,我们最常见的就有new.base.this.using.class.struct.abstract.interface.is.as等等.有很多的,在这里就介绍大家常见的,并且有 ...

  8. Python基础学习-Python中最常见括号()、[]、{}的区别

    Python中最常见括号的区别: 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{}:其作用也不相同,分别用来代表不同的Python基本内置数据类型. Python中的 ...

  9. Linux中find常见用法

    Linux中find常见用法示例 ·find   path   -option   [   -print ]   [ -exec   -ok   command ]   {} \; find命令的参数 ...

  10. WCF项目中出现常见错误的解决方法:基础连接已经关闭: 连接被意外关闭

    在我们开发WCF项目的时候,常常会碰到一些莫名其妙的错误,有时候如果根据它的错误提示信息,一般很难定位到具体的问题所在,而由于WCF服务的特殊性,调试起来也不是那么方便,因此往往会花费不少时间来进行跟 ...

随机推荐

  1. Docker Compose的安装及命令补全

    安装Compose Compose的安装有多种方式,例如通过shell安装.通过pip安装.以及将compose作为容器安装等等.本文讲解通过shell安装的方式.其他安装方式如有兴趣,可以查看Doc ...

  2. Python中dataclass库

    目录 dataclass语法 一. 简介 二. 装饰器参数 三. 数据属性 1. 参数 2. 使用示例 3. 注意事项 四. 其他 1. 常用函数 2. 继承 3. 总结 dataclass语法 一. ...

  3. 从源码分析 MGR 的流控机制

    Group Replication 是一种 Shared-Nothing 的架构,每个节点都会保留一份数据. 虽然支持多点写入,但实际上系统的吞吐量是由处理能力最弱的那个节点决定的. 如果各个节点的处 ...

  4. 魔改editormd组件,优化ToC渲染效果

    前言 我的StarBlog博客目前使用 editor.md 组件在前端渲染markdown文章,但这个组件自动生成的ToC(内容目录)不是很美观,我之前魔改过一个树形组件 BootStrap-Tree ...

  5. Vue学习之--------Vue中过滤器(filters)的使用(代码实现)(2022/7/18)

    1.过滤器 1.1 概念 过滤器: 定义:对要显示的数据进行特定格式化后再显示(适用于一些简单逻辑的处理). 语法: 1.注册过滤器:Vue.filter(name,callback) 或 new V ...

  6. 齐博x1第三季《模板风格的制作》系列009-自定义区块代码

    本节来说明如何自定义区块代码,不再继承上层模板,实现个性模板 上一节因为我们继承了layout布局模版,所以我们自定义的代码就无效了 如果我们继承了上层模板,那么相当于我们复制了一份上层模板的结构,也 ...

  7. AI人脸识别+换脸

    视频换脸可参考 https://github.com/iperov/DeepFaceLab import dlib.dlib as dlib import numpy import sys impor ...

  8. Rocky之Mysql-MHA高可用

    9.半同步复制 安装插件三种方法: 第一种: mysql>INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so' 安装 在 ...

  9. Rock18框架之整体框架介绍

    1. 总体框架图 2.框架能解决哪些问题? 问题1: 自动化设备包含龙门架.机械手.伺服.步进等电机.IO控制.定位及纠偏.界面展示等部分.其中硬件(伺服.IO等)是需要更换的,硬件的更换不影响整套系 ...

  10. C#使用附加到进程调试

    微软官网的调试进程介绍 首先运行bin下的可执行文件,然后打开源代码,选择调试--->附加到进程.