一、什么是词项向量

词项向量(term vector)是有elasticsearch在index document的时候产生,其包含对document解析过程中产生的分词的一些信息,例如分词在字段值中的位置、开始和结束的字符位置、分词的元数据payloads等;

term vector是单独进行存储的,会额外多占用一杯的空间,所以elasticsearch默认情况下禁用词项向量,如果要启用,我们需要在字段的mapping中使用term_vector进行设置;

二、term_vector的配置选项

term vector支持以下配置选项

配置选项 描述
no 不启用term vector,默认值
yes 启用term vector,但是仅仅记录分词
with_positions 启用term vector, 记录分词及分词在字符串中的位置
with_offsets 启用term vector, 记录分词在字符串中的起始字符位置
with_positions_offsets 启用term vector, 记录分词在字符串中的位置及起始的字符位置
with_positions_payloads 启用term vector, 记录分词在字符串中的位置及payloads
with_positions_offsets_payloads 启用term vector, 记录分词在字符串中的位置、起始字符位置及payloads

我们使用以下mapping配置,为text、fullname字段启用term vector;

PUT /term_vector_test/
{
"mappings":{
"_doc":{
"properties":{
"text":{
"type":"text",
"term_vector":"with_positions_offsets_payloads",
"store":true,
"analyzer":"standard"
},
"fullname":{
"type":"text",
"term_vector":"with_positions_offsets_payloads",
"analyzer":"standard"
}
}
}
},
"settings":{
"index":{
"number_of_shards":1,
"number_of_replicas":0
}
}
}

将以下两个document发送到elasticsearch进行index;

PUT /term_vector_test/_doc/1
{
"fullname" : "John Doe",
"text" : "twitter test test test "
} PUT /term_vector_test/_doc/2
{
"fullname" : "Jane Doe",
"text" : "Another twitter test ..."
}

三、查看term vector的数据结构

elasticsearch提供了_termvectors API,我们可以使用它来查看我们刚才index的doucment产生的term vector;

这个API每次只能查看特定的某个文档的term vector信息,我们可以通过url指定具体的document的_id;

term vector主要由term information、term statistics、field statistics构成,其中term information又分成了positions、offsets、payloads三个选项,我们可以通过请求的body的参数分别控制返回的信息;

下边我们查看id=1的文档的text字段的term vector信息;

GET /twitter/_doc/1/_termvectors
{
"fields" : ["text"],
"offsets" : true,
"payloads" : true,
"positions" : true,
"term_statistics" : true,
"field_statistics" : true
}

通过返回的信息可以看到erm vecter由三部分组成

分词基本信息

term position,分词在字段值中的位置,可以看到分词test在字段中占据下标为1、2、3三个位置,而分词twitter占据下标为0的位置;

start and end offsets, 分词在字段值中字符开始和结束位置,可以看到分词twitter的start_offset和end_offset分别为0和7;

term payloads,分词的元数据,可以看到每个分词的payload都是d29yZA==,从这里可以到elasticsearch默认值为 word;

term frequency,分词在字段值中出现的频率,可以看到分词twitter的term_freq是 1;

分词统计信息

total term frequency,当前分词在所有文档的当前字段中出现的频率,可以看到twitter的ttf是2,test的ttf是4;

document frequency,当前字段包含当前分词的文档的数量,可以看到两个document的text字段都包含test及twitter,所以两者的doc_freq为2;

字段统计信息

document count, 包含当前字段的document数量,这里两个文档都包含text字段,所以doc_count为2;

sum of document frequencies,当前字段中所有分词对应的document frequency的加和,这里以下计算可以得到sum_doc_freq为6;

\[df_{sum}(text) = df(test) + df(twitter) + df(anther) + df(...) = 2 + 2 + 1 + 1 = 6
\]

sum of total term frequencies,当前字段中所有分词对应的total term frequency的加和,这里以下计算可以得到sum_ttf为8;

\[tf_{sum}(text) = tf(test) + tf(twitter) + tf(anther) + tf(...) = 4 + 2 + 1 + 1 = 8
\]
{
"_index" : "twitter",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"found" : true,
"took" : 0,
"term_vectors" : {
"text" : {
"field_statistics" : {
"sum_doc_freq" : 6,
"doc_count" : 2,
"sum_ttf" : 8
},
"terms" : {
"test" : {
"doc_freq" : 2,
"ttf" : 4,
"term_freq" : 3,
"tokens" : [
{
"position" : 1,
"start_offset" : 8,
"end_offset" : 12,
"payload" : "d29yZA=="
},
{
"position" : 2,
"start_offset" : 13,
"end_offset" : 17,
"payload" : "d29yZA=="
},
{
"position" : 3,
"start_offset" : 18,
"end_offset" : 22,
"payload" : "d29yZA=="
}
]
},
"twitter" : {
"doc_freq" : 2,
"ttf" : 2,
"term_freq" : 1,
"tokens" : [
{
"position" : 0,
"start_offset" : 0,
"end_offset" : 7,
"payload" : "d29yZA=="
}
]
}
}
}
}
}

基于以下两点term statistics和field statistics并不是准确的;

删除的文档不会计算在内;

只计算请求文档所在的分片的数据;

elasticsearch高亮之词项向量的更多相关文章

  1. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  2. elasticsearch算法之词项相似度算法(一)

    一.词项相似度 elasticsearch支持拼写纠错,其建议词的获取就需要进行词项相似度的计算:今天我们来通过不同的距离算法来学习一下词项相似度算法: 二.数据准备 计算词项相似度,就需要首先将词项 ...

  3. elasticsearch算法之词项相似度算法(二)

    六.莱文斯坦编辑距离 前边的几种距离计算方法都是针对相同长度的词项,莱文斯坦编辑距离可以计算两个长度不同的单词之间的距离:莱文斯坦编辑距离是通过添加.删除.或者将一个字符替换为另外一个字符所需的最小编 ...

  4. 词嵌入向量WordEmbedding

    词嵌入向量WordEmbedding的原理和生成方法   WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单 ...

  5. TF-IDF词项权重计算

    一.TF-IDF 词项频率: df:term frequency. term在文档中出现的频率.tf越大,词项越重要. 文档频率: tf:document frequecy.有多少文档包括此term, ...

  6. 词项邻近 & 停用词 & 词干还原

    [词项邻近] 邻近操作符(proximity)用于指定查询中的两个词项应该在文档中互相靠近,靠近程度通常采用两者之间的词的个数或者是否同在某个结构单元(如句 子或段落)中出现来衡量. [停用词] 一些 ...

  7. ES 入门 - 基于词项的查询

    准备 首先先声明下,我这里使用的 ES 版本 5.2.0. 为了便于理解,这里以如下 index 为格式,该格式是通过 PMACCT 抓取的 netflow 流量信息, 文中所涉及的到的例子,全基于此 ...

  8. ElasticSearch IK热词自动热更新原理与Golang实现

    热更新概述 ik分词器本身可以从配置文件加载扩张词库,也可以从远程HTTP服务器加载. 从本地加载,则需要重启ES生效,影响比较大.所以,一般我们都会把词库放在远程服务器上.这里主要有2种方式: 借助 ...

  9. elasticsearch高亮之highlight原理

    一.highlight简介 highlight是提升用户体验的重要手段,搜索引擎通过高亮突出命中关键字等方式,方便用户通过关键字周围的信息快速的确认是否是自己希望的结果: highlight功能通常包 ...

随机推荐

  1. JDK安装步骤

    安装过程: 新建文件夹 新建文件夹 首先新建两个路径:D:\java\jdk和D:\java\jre,代表我把Java安装到D盘下的java路径下,在该路径下要新建两个路径,一会儿放jdk和jre. ...

  2. android怎么做表格显示数据

    实现思路:最底层(父级)背景为黑色,最上层(子级)背景为白色,然后父子组件之间存在一丝间隔即可显示出类似边框的线. 本次主要利用Android中的TableRow等实现,其他类比也可以实现效果. &l ...

  3. UIFont

    UIFont代表字体,常见创建方法有以下几个:+ (UIFont *)systemFontOfSize:(CGFloat)fontSize; 系统默认字体+ (UIFont *)boldSystemF ...

  4. Lvs+Keepalived+MySQL Cluster架设高可用负载均衡Mysql集群

    ------------------------------------- 一.前言 二.MySQL Cluster基本概念 三.环境 四.配置 1.LB-Master及LB-Backup配置 2.M ...

  5. RHCSA阶段笔记

    命令终端字段含义介绍 [root@localhost ~]# 解释: root:当前登录系统用户名(root超级管理员) localhost :当前主机名 :当前用户所在目录( 为家目录) ,root ...

  6. 动手写一个LRU缓存

    前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被占满. 在r ...

  7. 1、架构--架构图、Iptables(简介、四表五链、流程图、使用、扩展模块)、包过滤防火墙

    笔记 1.画架构图 2.Iptables 1.1 什么是防火墙 防止别人恶意访问. 1.2 防火墙种类 硬件防火墙 F5 软件防火墙 iptables firewalld 安全组 3.Iptables ...

  8. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

  9. Solution -「BJWC 2018」「洛谷 P4486」Kakuro

    \(\mathcal{Description}\)   Link.   有一个 \(n\times m\) 的网格图,其中某些格子被主对角线划成两个三角形,称这样的格子为特殊格:初始时,除了一些障碍格 ...

  10. ASP.NET Core 6框架揭秘-实例演示版[持续更新中…]

    作为<ASP.NET Core 3框架揭秘>的升级版,<ASP.NET Core 6框架揭秘>提供了很多新的章节,同时对现有的内容进行大量的修改.虽然本书旨在对ASP.NET ...