传送门

nttnttntt基础题。

考虑计算每一个数在排名为kkk时被统计了多少次来更新答案。

这样的话,设anskans_kansk​表示所有数的值乘上排名为kkk的子集数的总和。

则ansk=∑i=knai(i−1k−1)2n−ians_k=\sum_{i=k}^na_i\binom{i-1}{k-1}2^{n-i}ansk​=∑i=kn​ai​(k−1i−1​)2n−i

=>ansk=1(k−1)!∑i=knai(i−1)!(i−k)!2n−ians_k=\frac1{(k-1)!}\sum_{i=k}^na_i\frac{(i-1)!}{(i-k)!}2^{n-i}ansk​=(k−1)!1​∑i=kn​ai​(i−k)!(i−1)!​2n−i

=>ansk=1(k−1)!2k∑i=0n−kai+k(i+k−1)!2n−ii!ans_k=\frac1{(k-1)!2^k}\sum_{i=0}^{n-k}a_{i+k}(i+k-1)!\frac{2^{n-i}}{i!}ansk​=(k−1)!2k1​∑i=0n−k​ai+k​(i+k−1)!i!2n−i​

然后令xi=2n−ii!,yi=ai(i−1)!x_i=\frac{2^{n-i}}{i!},y_i=a_i(i-1)!xi​=i!2n−i​,yi​=ai​(i−1)!

那么将yyy数组翻转再平移一下就可以卷积了。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
typedef long long ll;
const int N=4e5+5,mod=998244353;
int tim,lim,n,a[N],b[N],fac[N],ifac[N],pos[N],pow2[N],num[N];
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=(ll)a*a%mod)if(p&1)ret=(ll)ret*a%mod;return ret;}
inline void prepare(){
    ifac[0]=ifac[1]=fac[0]=fac[1]=1,pow2[0]=1;
    for(ri i=1;i<=1e5;++i)pow2[i]=(ll)pow2[i-1]*2%mod;
    for(ri i=2;i<=1e5;++i)ifac[i]=(ll)ifac[mod%i]*(mod-mod/i)%mod,fac[i]=(ll)fac[i-1]*i%mod;
    for(ri i=2;i<=1e5;++i)ifac[i]=(ll)ifac[i-1]*ifac[i]%mod;
}
inline void init(){
    lim=1,tim=0;
    while(lim<=n*2)lim<<=1,++tim;
    for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void ntt(int *a,int type){
    for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
    int typ=type==1?3:(mod+1)/3,mult=(mod-1)>>1;
    for(ri mid=1,wn;mid<lim;mid<<=1,mult>>=1){
        wn=ksm(typ,mult);
        for(ri j=0,len=mid<<1;j<lim;j+=len){
            for(ri k=0,w=1;k<mid;++k,w=(ll)w*wn%mod){
                int a0=a[j+k],a1=(ll)a[j+k+mid]*w%mod;
                a[j+k]=(a0+a1)%mod,a[j+k+mid]=(a0-a1+mod)%mod;
            }
        }
    }
    if(type==-1){
        int inv=ksm(lim,mod-2);
        for(ri i=0;i<lim;++i)a[i]=(ll)a[i]*inv%mod;
    }
}
int main(){
    prepare();
    for(int tt=read();tt;--tt,puts("")){
        n=read(),init();
        for(ri i=1;i<=n;++i)num[i]=read();
        sort(num+1,num+n+1),reverse(num+1,num+n+1);
        for(ri i=0;i<n;++i)a[i]=(ll)ifac[i]*pow2[n-i]%mod;
        for(ri i=1;i<=n;++i)b[i]=(ll)fac[i-1]*num[i]%mod;
        reverse(b+1,b+n+1);
        for(ri i=0;i<n;++i)b[i]=b[i+1];
        b[n]=0;
        ntt(a,1),ntt(b,1);
        for(ri i=0;i<lim;++i)a[i]=(ll)a[i]*b[i]%mod;
        ntt(a,-1);
        for(ri inv=(mod+1)/2,ans=0,last=0,i=1;i<=n;++i){
            ans=((ll)inv*ifac[i-1]%mod*a[n-i]%mod+last)%mod;
            printf("%d ",last=ans);
            inv=(ll)inv*(mod+1)/2%mod;
        }
        memset(num,0,sizeof(num)),memset(a,0,sizeof(a)),memset(b,0,sizeof(b));
    }
    return 0;
}

2018.11.17 hdu5829Rikka with Subset(ntt)的更多相关文章

  1. 2018.11.16 bzoj4827: [Hnoi2017]礼物(ntt)

    传送门 nttnttntt 入门题. 考虑展开要求的式子∑i=0n−1(xi−yi−c)2\sum_{i=0}^{n-1}(x_i-y_i-c)^2∑i=0n−1​(xi​−yi​−c)2 => ...

  2. 2018.11.16javascript课上随笔(DOM)

    <li> <a href = "“#”>-</a> </li> <li>子节点:文本节点(回车),元素节点,文本节点. 不同节点树 ...

  3. HDU - 5829:Rikka with Subset (NTT)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  4. HDU 5829 Rikka with Subset(NTT)

    题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...

  5. 2018.12.17 bzoj3667: Rabin-Miller算法(Pollard-rho)

    传送门 Pollard−rhoPollard-rhoPollard−rho板题. 题意简述:给出几个数,让你判断是不是质数,如果不是质数就求出其最大质因子,数的大小为1e181e181e18以内. 先 ...

  6. 2018.11.01 NOIP训练 梭哈(模拟)

    传送门 这题貌似不考智商啊. 直接按题意写就可以了. 事实上把牌从小到大排序之后写起来很舒服的. 然后就是有些地方可以人脑减代码量和判断次数. (提示:满堂红和某几种同类型的牌的大小判断) 然后注意A ...

  7. 2018.12.17 ural1132 Square Root(二次剩余)

    传送门 MD写一道二次剩余的板题差点写自闭了. 我用的是cipollacipollacipolla算法. 利用的是欧拉准则来找寻一个二次非剩余类来求根. 注意这题有两个等根和模数为2的情况. 代码: ...

  8. 2018.11.07 NOIP模拟 数独(模拟)

    传送门 sbsbsb签到题. 读题时间比写题时间长系列. 写一个checkcheckcheck函数来检验当前时间段第(i,j)(i,j)(i,j)号格子能否放入kkk就行了. 代码

  9. 2018.09.17 atcoder Digit Sum(数论)

    传送门 数论好题啊. 首先对于b<=sqrt(n)b<=sqrt(n)b<=sqrt(n)的情况直接枚举b判断一下就行了. 下面谈一谈如何解决b>sqrt(n)b>sqr ...

随机推荐

  1. 浅谈CSRF

    CSRF是什么? (Cross Site Request Forgery, 跨站域请求伪造)是一种网络的攻击方式,它在 2007 年曾被列为互联网 20 大安全隐患之一,也被称为“One Click ...

  2. TZOJ 3710 修路问题(最小差值生成树kruskal或者LCT)

    描述 xxx国“山头乡”有n个村子,政府准备修建乡村公路,由于地形复杂,有些乡村之间可能无法修筑公路,因此政府经过仔细的考察,终于得到了所有可能的修路费用数据.并将其公布于众,广泛征求村民的修路意见. ...

  3. TZOJ 3665 方格取数(2)(最大点权独立集)

    描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...

  4. SSM提交了事物但数据库不执行

    从图中可以看到,spring已经给出事物提交成功,但数据库并未插入数据,找了老半天发现,数据库表上我加了个触发器,触发器执行失败造成没有数据库commit.但程序没什么不报异常吗?

  5. java爬取网页Unicode转UTF-8中文

    unicode编码简而言之就是将每一个字符用16位2进制数标识.但是通常都用4位的16进制数标识. 例如: 1)中文字符串"你好"的unicode码为:\u60\u597d; 2) ...

  6. 通过docker-compose构建ghost博客(二)

    上一篇通过yml文件构建 ghost博客,这次通过构建nginx服务,并添加反向代理来运行搭建的ghost博客. 目录结构 ghost.conf 就是 定义的nginx 加载的配置文件 server ...

  7. CSS-calc 兼容写法

    width: 90%;/*写给不支持calc()的浏览器*/ width:-moz-calc(100% - (10px + 5px) * 2); width:-webkit-calc(100% - ( ...

  8. .netcore webapi iis 虚拟目录下载apk文件

    首先贴上微软的文档:https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files 参考网址:http://www.cnb ...

  9. Vue 插件和Preset

    插件和Preset 插件 Vue CLI 使用了一套基于插件的架构 Vue CLI 使用了一套基于插件的架构.如果你查阅一个新创建项目的 package.json,就会发现依赖都是以 @vue/cli ...

  10. 关于js动画简单理解;

    1.CSS样式提供了运动 过度的属性:transition 过度的属性值:attr  ,time  , liner  ,  delay: 值分别是:属性(css),花费的时间,变化的速度(默认匀速), ...