传送门

nttnttntt基础题。

考虑计算每一个数在排名为kkk时被统计了多少次来更新答案。

这样的话,设anskans_kansk​表示所有数的值乘上排名为kkk的子集数的总和。

则ansk=∑i=knai(i−1k−1)2n−ians_k=\sum_{i=k}^na_i\binom{i-1}{k-1}2^{n-i}ansk​=∑i=kn​ai​(k−1i−1​)2n−i

=>ansk=1(k−1)!∑i=knai(i−1)!(i−k)!2n−ians_k=\frac1{(k-1)!}\sum_{i=k}^na_i\frac{(i-1)!}{(i-k)!}2^{n-i}ansk​=(k−1)!1​∑i=kn​ai​(i−k)!(i−1)!​2n−i

=>ansk=1(k−1)!2k∑i=0n−kai+k(i+k−1)!2n−ii!ans_k=\frac1{(k-1)!2^k}\sum_{i=0}^{n-k}a_{i+k}(i+k-1)!\frac{2^{n-i}}{i!}ansk​=(k−1)!2k1​∑i=0n−k​ai+k​(i+k−1)!i!2n−i​

然后令xi=2n−ii!,yi=ai(i−1)!x_i=\frac{2^{n-i}}{i!},y_i=a_i(i-1)!xi​=i!2n−i​,yi​=ai​(i−1)!

那么将yyy数组翻转再平移一下就可以卷积了。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
typedef long long ll;
const int N=4e5+5,mod=998244353;
int tim,lim,n,a[N],b[N],fac[N],ifac[N],pos[N],pow2[N],num[N];
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=(ll)a*a%mod)if(p&1)ret=(ll)ret*a%mod;return ret;}
inline void prepare(){
    ifac[0]=ifac[1]=fac[0]=fac[1]=1,pow2[0]=1;
    for(ri i=1;i<=1e5;++i)pow2[i]=(ll)pow2[i-1]*2%mod;
    for(ri i=2;i<=1e5;++i)ifac[i]=(ll)ifac[mod%i]*(mod-mod/i)%mod,fac[i]=(ll)fac[i-1]*i%mod;
    for(ri i=2;i<=1e5;++i)ifac[i]=(ll)ifac[i-1]*ifac[i]%mod;
}
inline void init(){
    lim=1,tim=0;
    while(lim<=n*2)lim<<=1,++tim;
    for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void ntt(int *a,int type){
    for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
    int typ=type==1?3:(mod+1)/3,mult=(mod-1)>>1;
    for(ri mid=1,wn;mid<lim;mid<<=1,mult>>=1){
        wn=ksm(typ,mult);
        for(ri j=0,len=mid<<1;j<lim;j+=len){
            for(ri k=0,w=1;k<mid;++k,w=(ll)w*wn%mod){
                int a0=a[j+k],a1=(ll)a[j+k+mid]*w%mod;
                a[j+k]=(a0+a1)%mod,a[j+k+mid]=(a0-a1+mod)%mod;
            }
        }
    }
    if(type==-1){
        int inv=ksm(lim,mod-2);
        for(ri i=0;i<lim;++i)a[i]=(ll)a[i]*inv%mod;
    }
}
int main(){
    prepare();
    for(int tt=read();tt;--tt,puts("")){
        n=read(),init();
        for(ri i=1;i<=n;++i)num[i]=read();
        sort(num+1,num+n+1),reverse(num+1,num+n+1);
        for(ri i=0;i<n;++i)a[i]=(ll)ifac[i]*pow2[n-i]%mod;
        for(ri i=1;i<=n;++i)b[i]=(ll)fac[i-1]*num[i]%mod;
        reverse(b+1,b+n+1);
        for(ri i=0;i<n;++i)b[i]=b[i+1];
        b[n]=0;
        ntt(a,1),ntt(b,1);
        for(ri i=0;i<lim;++i)a[i]=(ll)a[i]*b[i]%mod;
        ntt(a,-1);
        for(ri inv=(mod+1)/2,ans=0,last=0,i=1;i<=n;++i){
            ans=((ll)inv*ifac[i-1]%mod*a[n-i]%mod+last)%mod;
            printf("%d ",last=ans);
            inv=(ll)inv*(mod+1)/2%mod;
        }
        memset(num,0,sizeof(num)),memset(a,0,sizeof(a)),memset(b,0,sizeof(b));
    }
    return 0;
}

2018.11.17 hdu5829Rikka with Subset(ntt)的更多相关文章

  1. 2018.11.16 bzoj4827: [Hnoi2017]礼物(ntt)

    传送门 nttnttntt 入门题. 考虑展开要求的式子∑i=0n−1(xi−yi−c)2\sum_{i=0}^{n-1}(x_i-y_i-c)^2∑i=0n−1​(xi​−yi​−c)2 => ...

  2. 2018.11.16javascript课上随笔(DOM)

    <li> <a href = "“#”>-</a> </li> <li>子节点:文本节点(回车),元素节点,文本节点. 不同节点树 ...

  3. HDU - 5829:Rikka with Subset (NTT)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  4. HDU 5829 Rikka with Subset(NTT)

    题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...

  5. 2018.12.17 bzoj3667: Rabin-Miller算法(Pollard-rho)

    传送门 Pollard−rhoPollard-rhoPollard−rho板题. 题意简述:给出几个数,让你判断是不是质数,如果不是质数就求出其最大质因子,数的大小为1e181e181e18以内. 先 ...

  6. 2018.11.01 NOIP训练 梭哈(模拟)

    传送门 这题貌似不考智商啊. 直接按题意写就可以了. 事实上把牌从小到大排序之后写起来很舒服的. 然后就是有些地方可以人脑减代码量和判断次数. (提示:满堂红和某几种同类型的牌的大小判断) 然后注意A ...

  7. 2018.12.17 ural1132 Square Root(二次剩余)

    传送门 MD写一道二次剩余的板题差点写自闭了. 我用的是cipollacipollacipolla算法. 利用的是欧拉准则来找寻一个二次非剩余类来求根. 注意这题有两个等根和模数为2的情况. 代码: ...

  8. 2018.11.07 NOIP模拟 数独(模拟)

    传送门 sbsbsb签到题. 读题时间比写题时间长系列. 写一个checkcheckcheck函数来检验当前时间段第(i,j)(i,j)(i,j)号格子能否放入kkk就行了. 代码

  9. 2018.09.17 atcoder Digit Sum(数论)

    传送门 数论好题啊. 首先对于b<=sqrt(n)b<=sqrt(n)b<=sqrt(n)的情况直接枚举b判断一下就行了. 下面谈一谈如何解决b>sqrt(n)b>sqr ...

随机推荐

  1. JS中取得<asp:TextBox中的值

    var s = document.getElementById("<%=txt_DaShen.ClientID %>").value; 注:txt_DaShen 为as ...

  2. unity的inputField文本框赋值问题

    GameObject t = GameObject.Find("InputFieldT"); Text tt = t.transform.Find("Text" ...

  3. 100-days: eight

    Title: U.S.(美国司法部)  accuses rich parents of college entry fraud accuse  v.指控,指责,谴责 accuse someone of ...

  4. 《基于Nginx的中间件架构》学习笔记---4.nginx编译参数详细介绍

    通过nginx -V查看编译时参数: 在nginx安装目录下,通过./configure --help,查看对应版本ngnix编译时支持的所有参数: Nginx编译参数详细介绍: --help 显示本 ...

  5. java NIO buffer --directBuffer (2)

    HeapBuffer ----堆缓冲    :其实是在java 的内存模型中,java 虚拟机可以直接管控的 DirectBuffer ---直接缓冲 :使用的是native ,与操作系统挂钩,调用的 ...

  6. java_2变量和运算符

    1.变量 存储数据的容器. 2.变量创建的3要素 数据类型 变量名 = 变量值: 如int  a = 10; 3.数据类型的自动转化 当小范围变量向大范围变量转化的时候,会发生这种情况.如int类型变 ...

  7. linux命令学习之:ps

    Linux中的ps命令是Process Status的缩写.ps命令用于报告当前系统的进程状态,列出系统中当前运行的那些进程.可以搭配kill指令随时中断.删除不必要的程序. 要对进程进行监测和控制, ...

  8. sql按照中文拼音排序

    select * from table order by convert(columnName using gbk) asc 注意:会导致全表扫描 建立冗余字段,插入数据时字段为convert(col ...

  9. go语言使用go-sciter创建桌面应用(四) 固定窗口大小

    有些时候我们需要创建的应用窗口大小不可改变. demo5.go代码如下: package main; import ( "github.com/sciter-sdk/go-sciter/wi ...

  10. Git两分钟指南-学习入门参考

    Git两分钟指南 http://blog.jobbole.com/78999/ GIT和SVN之间的五个基本区别 http://www.oschina.net/news/12542/git-and-s ...