考虑暴力dp:f[i][j]表示i个数值域1~j时的答案。考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!。

  注意到值域很大,考虑能不能在这一维上优化。完全不会证地有f[i][j]是一个关于j的2i次多项式。那么dp出一部分后就可以直接拉格朗日插值求出多项式,代入即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 510
int n,m,P,f[N][N<<],fac[N],ans=;
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int inv(int x){return ksm(x,P-);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=read(),n=read(),P=read();
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%P;
for (int i=;i<=n;i++)
{
f[i][i]=1ll*fac[i]*fac[i]%P;
for (int j=i+;j<=(n<<);j++)
f[i][j]=(f[i][j-]+1ll*f[i-][j-]*i%P*j%P)%P;
}
for (int i=;i<=(n<<);i++)
{
int w=f[n][i],v=;
for (int j=;j<=(n<<);j++)
if (i!=j) w=(1ll*w*(m-j+P)%P)%P,v=1ll*v*(i-j+P)%P;
ans=(ans+1ll*w*inv(v))%P;
}
cout<<ans;
return ;
}

BZOJ2655 calc(动态规划+拉格朗日插值法)的更多相关文章

  1. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  2. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  3. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  4. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  5. [国家集训队] calc(动规+拉格朗日插值法)

    题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...

  6. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  7. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  8. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  9. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

随机推荐

  1. expect 批量执行命令

    在跳板机上执行脚本,登录到远程机器分区格式化挂载命令 #!/bin/bashpasswd='engine'/usr/bin/expect <<-EOFset time 40spawn ss ...

  2. Xcode添加全局引用文件pch

    Xcode6之前有PrefixHeader.pch文件在写项目的时候,大部分宏定义.头文件都导入在这个pch文件,虽然方便,但会增加Build的时间,所以Xcode6以及之后的版本去除了PrefixH ...

  3. mvc5.0-路由

    :first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...

  4. Phabricator 在 centos 系统下发送 Email的配置

    前言 phabricator 配置email 其实很简单,配好smtp 服务器.端口.协议.用户名和登陆密码,但过程却好麻烦. 开始时跟着官网配 sendmail ,又 google 又 baidu, ...

  5. WayOS计费对接(零点计费系统)详细教程

    零点计费系统开发也有两年了,一直都是自己和朋友在使用,今年开始有对外免费开发体验的想法,在此简单介绍一下wayos和零点计费的对接教程. 可到官网www.feidian8.com里面的首页点击查看零点 ...

  6. python-两个图片相似度算法

    # -*- coding: UTF-8 -*- """ 作者:zxj 版本:1.0 日期:19-3-24 """ import cv2 im ...

  7. 《陪孩子像搭积木一样学编程》,一起来玩Scratch(1)使用Scratch编程的基本流程

    编程是一件很有趣的事情.初次接触编程,你可能不知所措,别担心,这并不复杂.首先,为了让读者对编程有大概的了解,可以把编写Scratch程序的过程分成7个步骤(如图1.8).注意,这是理想状态.在实际的 ...

  8. pytorch 对变长序列的处理

    一开始写这篇随笔的时候还没有了解到 Dateloader有一个 collate_fn 的参数,通过定义一个collate_fn 函数,其实很多batch补齐到当前batch最长的操作可以放在colla ...

  9. 微软职位内部推荐-SW Engineer II for WinCE

    微软近期Open的职位: Do you have a passion for embedded devices and services? &nbsp Does the following m ...

  10. 12.23daily_scrum

    今天大家的工作重心在调试过程中,以便及时地发现和解决在调试过程中出现的问题和漏洞,悬浮窗测试工作也已经展开,主要集中在边缘设计代码的测试部分,具体工作如下: 具体工作: 小组成员 今日任务 明日任务 ...