BZOJ2655 calc(动态规划+拉格朗日插值法)
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案。考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!。
注意到值域很大,考虑能不能在这一维上优化。完全不会证地有f[i][j]是一个关于j的2i次多项式。那么dp出一部分后就可以直接拉格朗日插值求出多项式,代入即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 510
int n,m,P,f[N][N<<],fac[N],ans=;
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int inv(int x){return ksm(x,P-);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=read(),n=read(),P=read();
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%P;
for (int i=;i<=n;i++)
{
f[i][i]=1ll*fac[i]*fac[i]%P;
for (int j=i+;j<=(n<<);j++)
f[i][j]=(f[i][j-]+1ll*f[i-][j-]*i%P*j%P)%P;
}
for (int i=;i<=(n<<);i++)
{
int w=f[n][i],v=;
for (int j=;j<=(n<<);j++)
if (i!=j) w=(1ll*w*(m-j+P)%P)%P,v=1ll*v*(i-j+P)%P;
ans=(ans+1ll*w*inv(v))%P;
}
cout<<ans;
return ;
}
BZOJ2655 calc(动态规划+拉格朗日插值法)的更多相关文章
- BZOJ2655 Calc - dp 拉格朗日插值法
BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ2655: calc(dp 拉格朗日插值)
题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- [国家集训队] calc(动规+拉格朗日插值法)
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...
随机推荐
- 一个将lambda字符串转化为lambda表达式的公共类
一个将lambda字符串转化为lambda表达式的公共类.StringToLambda 使用方式如下: var module = new Module(); url = url.ToLower();/ ...
- jQuery上传文件
1.引入资源 <script src="/yami/backend/backres/js/jquery.min.js"></script> <scri ...
- 2017-2018 Exp3 MAL_免杀原理与实践 20155214
目录 Exp3 MAL_免杀原理与实践 实验内容 对msf生成后门程序的检测 Veil-Evasion应用 Visual Studio2017 + shellcode生成后门 主要思路 知识点 最后的 ...
- 20155235 王玥 《基于Arm实验箱的接口测试和应用》 课程设计报告
20155235 王玥 <基于Arm实验箱的接口测试和应用> 课程设计报告 一.设计方案及可行性分析 熟悉 Linux 开发环境 多线程应用程序设计 串行端口程序设计 中断实验 二.详细设 ...
- Python的进制等转换
To 十进制 二进制: >>> int('110', 2) -> 6 八进制: >>> int('10', 8) -> 8 十六进制: >> ...
- 设计模式 笔记 命令模式 Command
//---------------------------15/04/25---------------------------- //Conmmand 命令模式----对象行为型模式 /* 1:意 ...
- LeetCode Generate Parentheses (DFS)
题意 Given n pairs of parentheses, write a function to generate all combinations of well-formed parent ...
- html元素双击事件触发机制猜想及疑惑
今天有个同事遇到一个奇怪的问题,我照着他的代码做了一些简化写了这个demo <!DOCTYPE html> <html> <head> <style type ...
- 深度学习目标检测综述推荐之 Xiaogang Wang ISBA 2015
一.INTRODUCTION部分 (1)先根据时间轴讲了历史 (2)常见的基础模型 (3)讲了深度学习的优势 那就是feature learning,而不用人工划分的feature engineeri ...
- PHP学习 类型 变量 常数 运算符
PHP支持下列8种类型 标量类型 scalar type整数 integer浮点数 float double布尔 boolean字符串 string 特殊类型 special typeNULL资源 r ...