【Java】 大话数据结构(15) 排序算法(2) (快速排序及其优化)
本文根据《大话数据结构》一书,实现了Java版的快速排序。
更多:数据结构与算法合集
基本概念
基本思想:在每轮排序中,选取一个基准元素,其他元素中比基准元素小的排到数列的一边,大的排到数列的另一边;之后对两边的数列继续进行这种排序,最终达到整体有序。
图片来自公众号:程序员小灰
实现代码
根据上述基本思想,可以先写出快速排序最核心的代码:对于数组a中从下标为low至下标为high的元素,选取一个基准元素(记为pivotKey),根据与基准比较的大小,将这些元素排到基准元素的两端。
注意点:1.两端向中间扫描时,一定要先从高段往低端扫描(low<high && a[high]<pivotKey),这样才能实现pivotKey一直会交换到中间。!!
2.比较大小时不要忘记low<high还要一直成立,即(low<high && a[high]<pivotKey)。!! 例如,数组全为同一个数字时,不加这个判断有可能导致越界
/**
* 对数组a中下标从low到high的元素,选取基准元素pivotKey,
* 根据与基准比较的大小,将各个元素排到基准元素的两端。
* 返回值为最后基准元素的位置
*/
public int partition(int[] a, int low, int high) {
int pivotKey = a[low]; //用第一个元素作为基准元素
while (low < high) { //两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
swap(a, low, high); //比基准大的元素放到高端
}
return low; //返回基准元素所在位置
}
将元素分为两部分后,必须对两个子部分继续进行上面的排序,所以要用到递归。代码如下:
/**
* 递归调用
*/
public void qSort(int[] a, int low, int high) {
int pivot;
if (low >= high)
return;
pivot = partition(a, low, high); //将数列一分为二
qSort(a, low, pivot - 1); //对低子表排序
qSort(a, pivot + 1, high); //对高子表排序
}
完整Java代码
(含测试代码)
import java.util.Arrays; /**
*
* @Description 快速排序
*
* @author yongh
* @date 2018年9月14日 下午2:39:00
*/
public class QuickSort {
public void quickSort(int[] a) {
if (a == null)
return;
qSort(a, 0, a.length - 1);
} /**
* 递归调用
*/
public void qSort(int[] a, int low, int high) {
int pivot;
if (low >= high)
return;
pivot = partition(a, low, high); //将数列一分为二
qSort(a, low, pivot - 1); //对低子表排序
qSort(a, pivot + 1, high); //对高子表排序
} /**
* 对数组a中下标从low到high的元素,选取基准元素pivotKey,
* 根据与基准比较的大小,将各个元素排到基准元素的两端。
* 返回值为最后基准元素的位置
*/
public int partition(int[] a, int low, int high) {
int pivotKey = a[low]; //用第一个元素作为基准元素
while (low < high) { //两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
swap(a, low, high); //比基准大的元素放到高端
}
return low; //返回基准元素所在位置
} public void swap(int[] a, int i, int j) {
int temp;
temp = a[j];
a[j] = a[i];
a[i] = temp;
} // =========测试代码=======
public void test1() {
int[] a = null;
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test2() {
int[] a = {};
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test3() {
int[] a = { 1 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test4() {
int[] a = { 3, 3, 3, 3, 3 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public void test5() {
int[] a = { -3, 6, 3, 1, 3, 7, 5, 6, 2 };
quickSort(a);
System.out.println(Arrays.toString(a));
} public static void main(String[] args) {
QuickSort demo = new QuickSort();
demo.test1();
demo.test2();
demo.test3();
demo.test4();
demo.test5();
}
}
null
[]
[]
[, , , , ]
[-, , , , , , , , ]
QuickSort
快速排序优化
1.优化选取枢纽
基准应尽量处于序列中间位置,可以采取“三数取中”的方法,在partition()方法开头加以下代码,使得a[low]为三数的中间值:
// 三数取中,将中间元素放在第一个位置
if (a[low] > a[high])
swap(a, low, high);
if (a[(low + high) / 2] > a[high])
swap(a, (low + high) / 2, high);
if (a[low] < a[(low + high) / 2])
swap(a, (low + high) / 2, low);
2.优化不必要的交换
两侧向中间扫描时,可以将交换数据变为替换:
while (low < high) { // 两侧交替向中间扫描
while (low < high && a[high] >= pivotKey)
high--;
a[low] = a[high];
// swap(a, low, high); //比基准小的元素放到低端
while (low < high && a[low] <= pivotKey)
low++;
a[high] = a[low];
// swap(a, low, high); //比基准大的元素放到高端
}
a[low]=pivotKey; //在中间位置放回基准值
3.优化小数组时的排序方案
当数组非常小时,采用直接插入排序(简单排序中性能最好的方法)
4.优化递归操作
qSort()方法中,有两次递归操作,递归对性能有较大影响。因此,使用while循环,在第一次递归后,变量low就没有用处了,可将pivot+1赋值给low,下次循环中,partition(a, low, high)的效果等同于qSort(a, pivot + 1, high),从而可以减小堆栈的深度,提高性能。
// pivot = partition(a, low, high); // 将数列一分为二
// qSort(a, low, pivot - 1); // 对低子表排序
// qSort(a, pivot + 1, high); // 对高子表排序 //优化递归操作
while (low < high) {
pivot = partition(a, low, high); // 将数列一分为二
qSort(a, low, pivot - 1); // 对低子表排序
low = pivot + 1;
}
复杂度分析
快速排序时间性能取决于递归深度,而空间复杂度是由递归造成的栈空间的使用。递归的深度可以用递归树来描述,如{50,10,90,30,70,40,80,60,20}的递归树如下:
最优情况:
最优情况下,每次选取的基准元素都是元素中间值,partition()方法划分均匀,此时根据二叉树的性质4可以知道,排序n个元素,其递归树的深度为[log2n]+1,所以仅需要递归log2n次。
将排序n个元素的时间记为T(n),则有以下推断:
所以最优情况下的时间复杂度为:O(nlogn);同样根据递归树的深度,最优空间复杂度为O(logn)。
最坏情况:
递归树为一棵斜树,需要n-1次调用,所以最坏空间复杂度为O(logn)。在第i次调用中需要n-1次的关键字比较,所以比较次数为:Σ(n-i)=(n-1)+……+2+1=n(n-1)/2,所以最坏时间复杂度为O(n^2)。
平均情况:
平均时间复杂度:O(nlogn),平均空间复杂度O(logn)。
更多:数据结构与算法合集
【Java】 大话数据结构(15) 排序算法(2) (快速排序及其优化)的更多相关文章
- 【Java】 大话数据结构(14) 排序算法(1) (冒泡排序及其优化)
本文根据<大话数据结构>一书,实现了Java版的冒泡排序. 更多:数据结构与算法合集 基本概念 基本思想:将相邻的元素两两比较,根据大小关系交换位置,直到完成排序. 对n个数组成的无序数列 ...
- 【Java】 大话数据结构(16) 排序算法(3) (堆排序)
本文根据<大话数据结构>一书,实现了Java版的堆排序. 更多:数据结构与算法合集 基本概念 堆排序种的堆指的是数据结构中的堆,而不是内存模型中的堆. 堆:可以看成一棵完全二叉树,每个结点 ...
- 【Java】 大话数据结构(17) 排序算法(4) (归并排序)
本文根据<大话数据结构>一书,实现了Java版的归并排序. 更多:数据结构与算法合集 基本概念 归并排序:将n个记录的序列看出n个有序的子序列,每个子序列长度为1,然后不断两两排序归并,直 ...
- 【Java】 大话数据结构(18) 排序算法(5) (直接插入排序)
本文根据<大话数据结构>一书,实现了Java版的直接插入排序. 更多:数据结构与算法合集 基本概念 直接插入排序思路:类似扑克牌的排序过程,从左到右依次遍历,如果遇到一个数小于前一个数,则 ...
- Java常见排序算法之快速排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java排序算法之快速排序
Java排序算法之快速排序 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 ...
- javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法)
javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法) 一.快速排序算法 /* * 这个函数首先检查数组的长度是否为0.如果是,那么这个数组就不需要任何排序,函数直接返回. * ...
- 【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)
本文根据<大话数据结构>一书,实现了Java版的二叉排序树/二叉搜索树. 二叉排序树介绍 在上篇博客中,顺序表的插入和删除效率还可以,但查找效率很低:而有序线性表中,可以使用折半.插值.斐 ...
- Java中的数据结构及排序算法
(明天补充) 主要是3种接口:List Set Map List:ArrayList,LinkedList:顺序表ArrayList,链表LinkedList,堆栈和队列可以使用LinkedList模 ...
随机推荐
- 自定义Kettle数据库插件
项目需要实现使用Kettle向神通数据库中写入数据,Kettle官方标准的数据库插件里面并没有对神通数据库的支持,因此需要自己写一个数据库插件.下面我们开始写一个数据库插件 1.在eclipse中创建 ...
- CF1012C Hills
显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...
- JAVA字符串格式化-String.format()的使用 【生成随机数补0操作】
转: JAVA字符串格式化-String.format()的使用 常规类型的格式化 String类的format()方法用于创建格式化的字符串以及连接多个字符串对象.熟悉C语言的同学应该记得C语言的s ...
- SQL Server 2012中LEAD函数简单分析
LEAD函数简单点说,就是把下一行的某列数据提取到当前行来显示,看示例更能解释清楚,先看测试用脚本 DECLARE @TestData TABLE( ID INT IDENTITY(1,1), Dep ...
- [转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()
Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me ...
- json字符串和Json对象,以及json的基本了解
考虑到python等语言中没有更好表示json对象的方法,所以使用JavaScript来介绍json 首先是json字符串: var str1 = '{ "name": " ...
- [整理]x=x++和x=++x
最近看java面试题,再次遇到x=x++,之前一直按照C语言中对自增运算符++的解释去理解.殊不知自己犯了严重的错误. (1)不同的语言的编译器,会导致相同的代码最终执行的结果不确定; (2)而且就算 ...
- OnContextMenu事件(转)
用oncontextmenu事件单禁用右键菜单 一个页面中,BODY中用oncontextmenu='return false'来取消鼠标右键:在JS中设置oncontextmenu='return ...
- ASP.NET乱码深度剖析
写在前面 在Web开发中,乱码应该算一个常客了.今天还好好的一个页面,第二天过来打开一看,中文字符全变“外星文”了.有时为了解决这样的问题,需要花上很长的时间去调试,直至抓狂,笔者也曾经历过这样的时期 ...
- Linux学习6-套接字
套接字 1.什么是套接字? 套接字(socket)是一种通信机制,凭借这种机制,客户/服务器系统的开发工作既可以在本地单机上进行,也可以跨网络进行. 2.套接字应用程序是如何通过套接字来维持一个连接的 ...