好久没更博客了,先水一篇再说。其实这个做法应该算是杜教筛的一个拓展。

powerful number的定义是每个质因子次数都 $\geq 2$ 的数。首先,$\leq n$ 的powerful number个数是 $O(\sqrt{n})$ 的,这是因为所有powerful number显然可以表示成 $a^2b^3$,所以个数不超过 $\sum_{i=1}^{\sqrt{n}} (n/i^2)^{1/3}$,积分积一下就算出来了。求所有 $\leq n$ 的powerful number只要暴搜质因子分解式即可。

例题1  pe63?

有一个积性函数 $F$ 满足对于所有质数 $p$,$F(p^q)=p~(q \geq 1)$,求 $F$ 的前缀和。

我们发现有一个跟它长得很像的积性函数 $G$!$G(x)=x$,我们会求 $G$ 的前缀和!并且对于所有质数 $p$,$G(p)=F(p)=p$。

我们求出 $H=F/G$,其中除法指的是狄利克雷除法,即狄利克雷卷积的逆运算。$H$ 也是一个积性函数,那么由 $F(p^q)=\sum_{i=0}^q G(p^i)H(p^{q-i})$ 和 $H(1)=1$ 不难发现对于所有质数 $p$,$H(p)=0$。

我们欲求的是 $\sum_{i=1}^n F(i)$,由于 $F=H*G$(乘法为狄利克雷卷积),那么有 $\sum_{i=1}^n F(i)=\sum_{ij \leq n} H(i)G(j)=\sum_{i=1}^n H(i) \sum_{j=1}^{n/i} G(j)$。

由于 $H(p)=0$,所有 $H(i) \neq 0$ 的位置显然都是powerful number,我们只需枚举所有powerful number,算出对应的 $H$ 即可。

例题2  pe48?

求满足对质数 $p$,$F(p^d)=p^{d-[d \bmod p]}$ 的积性函数 $F$ 的前缀和。

$F(p)=1$。同上构造 $G(x)=1$ 即可。

例题3  loj6053

求满足对质数 $p$,$F(p^c)=p \oplus c$ 的积性函数 $F$ 的前缀和。

对 $p \neq 2$,$F(p)=p-1$。构造 $G=\varphi$ 即可,注意要特殊处理一下 $p=2$ 的情形。求欧拉函数的前缀和可以杜教筛,这里不再赘述。跑过min25筛是不可能的,这辈子都不可能跑过的

这里给出loj6053的代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD=1e9+7;
#define SZ 10000099
bool np[SZ];
int ph[SZ],ps[SZ/10],pn;
void shai()
{
ph[1]=1;
for(int i=2;i<SZ;++i)
{
if(!np[i]) ps[++pn]=i,ph[i]=i-1;
for(int j=1;j<=pn&&i*ps[j]<SZ;++j)
{
np[i*ps[j]]=1;
if(i%ps[j]==0)
{
ph[i*ps[j]]=ph[i]*ps[j];
break;
}
ph[i*ps[j]]=ph[i]*(ps[j]-1);
}
}
for(int i=1;i<SZ;++i)
ph[i]=(ph[i-1]+ph[i])%MOD;
}
ll n,u,s[1005];
ll S2(ll a)
{
ll b=a+1;
if(a&1) b>>=1; else a>>=1;
return (a%MOD)*(b%MOD)%MOD;
}
int h[100099][66],d[100099];
ll ans=0;
void dfs(ll x,ll v,int w)
{
ans=(ans+v*((n/x<SZ)?ph[n/x]:s[n/(n/x)]))%MOD;
if(w>1&&x>n/ps[w]/ps[w]) return;
for(int s=w;s<=pn;++s)
{
if(s>1&&x*ps[s]*ps[s]>n) break;
ll y=x*ps[s];
for(int j=1;y<=n;++j,y*=ps[s])
{
if(d[s]<j)
{
++d[s];
ll F=ps[s]^j,G=ps[s]-1;
for(int k=1;k<=j;++k)
F=(F-G%MOD*h[s][j-k])%MOD,G*=ps[s];
h[s][j]=F;
}
if(!h[s][j]) continue;
dfs(y,v*h[s][j]%MOD,s+1);
}
}
}
int main()
{
for(int i=0;i<=100000;++i)
h[i][0]=1;
shai(); cin>>n;
u=1; while(n/u>=SZ) ++u;
for(int i=u;i>=1;--i)
{
//s[i]=phi(n/i)
ll t=n/i,a=2,b,p; s[i]=S2(t);
for(;a<=t;a=b+1)
p=t/a,b=t/p,
s[i]=(s[i]-(b-a+1)%MOD*((p<SZ)?ph[p]:s[b*i]))%MOD;
}
dfs(1,1,1);
ans=(ans%MOD+MOD)%MOD;
cout<<ans<<"\n";
}

利用powerful number求积性函数前缀和的更多相关文章

  1. powerful number求积性函数前缀和

    算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\te ...

  2. 【Learning】积性函数前缀和——洲阁筛(min_25写法)

    问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...

  3. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  4. A New Function(LightOJ 1098)积性函数前缀和的应用

    题意:要求对于1~n,每个数的约数(不包括1和其本身)的和. 题解:由于题目数据有2*10^9之大,因而不能直接暴力.需要考虑积性函数的特性,由于必定有重复的约数出现,因而可以对重复约数所在的区间进行 ...

  5. Powerful Number 学习笔记

    定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中, ...

  6. [笔记] Powerful Number 筛

    定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i ...

  7. Powerful Number 筛学习笔记

    Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...

  8. Note - Powerful Number

    Powerful Number   对于 \(n\in\mathbb N_+\),若不存在素数 \(p\) 使得 \(p\mid n~\land~p^2\not\mid n\),则称 \(n\) 为 ...

  9. Powerful Number 筛法

    我也不想学筛法了,可你考试时候出一个新筛法就不厚道了吧,我还开始以为这是杜教筛... $tips:$学完杜教筛立马学$Powerful \ Number$筛法,此筛法强悍如斯 $Powerful \ ...

随机推荐

  1. python之Django实现商城从0到1

    dailyfresh-B2Cdailyfresh mall based on B2C model 基于B2C的天天生鲜商城 项目托管地址:https://github.com/Ylisen/daily ...

  2. 2017-2018-2 《网络对抗技术》20155322 Exp9 web安全基础

    [-= 博客目录 =-] 1-实践目标 1.1-实践介绍 1.2-实践内容 1.3-实践要求 2-实践过程 2.1-HTML 2.2-Injection Flaws 2.3-XSS 2.4-CSRF ...

  3. 20155333 《网络对抗》Exp3 免杀原理与实践

    20155333 <网络对抗>Exp3 免杀原理与实践 基础问题回答 (1)杀软是如何检测出恶意代码的? 基于特征码的检测: 启发式恶意软件检测: 基于行为的恶意软件检测. (2)免杀是做 ...

  4. [Oracle][Corruption]究竟哪些检查影响到 V$DATABASE_BLOCK_CORRUPTION

    根据 471716.1,11g 之后,下列动作如果遇到坏块,都会输出记录到  V$DATABASE_BLOCK_CORRUPTION. -  Analyze table .. Validate str ...

  5. flaskr 报错及其修改

    作者:hhh5460 官网有一个flaskr的例子,按照其8个步骤(包括测试),一步一步照着做,有3个地方报错. 究其原因,可能是flaskr这个例子年代比较久远,而现在python以及flask都有 ...

  6. 【HNOI2016】矿区

    题面 题解 知识引入 1. 平面图 一个图\(G=(V,E)\),若能将其画在平面上,且任意两条边的交点只能是\(G\)的顶点,则称\(G\)可嵌入平面,或称\(G\)是可平面的. 可平面图在平面上的 ...

  7. asp.net mvc2+nhibernate实体类映射问题之“尝试创建Controller类型的控制器时出错请确保控制器具有无参数公共构造函数”

    程序出了问题,解决后发现如此简单,犯的错误是如此的低级啊,特此记录! 运行程序总是在浏览器中看到一片空白,什么也没有,用application_error跟踪发现抓出一个这样的异常 然后浏览器中就是这 ...

  8. 使用 spring-boot-devtools 进行热部署

    2019/3/5 更新: 发现热部署不生效,出现页面显示error的错误,然后在 application.properties 中注释了下面两行成功实现热部署(直接删掉也可以) #spring.dev ...

  9. idea 解决 pom.xml 中,maven仓库无法导入的问题(红线)

    只需要用另一篇文章的 maven clean install 功能就行了 idea Cannot Resolve Symbol 问题解决

  10. python语言程序设计2

    1, 代码高亮色彩体系 2, 缩进,一行代码开始前的空白区域,表达程序的格式框架 单层缩进,多层缩进 特点 概念,缩进是语法的一部分,缩进不正确的话可能会导致程序运行错误 用处(意义),是表达代码间包 ...