【题目】#2302. 「NOI2017」整数

【题意】有一个整数x,一开始为0。n次操作,加上a*2b,或询问2k位是0或1。\(n \leq 10^6,|a| \leq 10^9,0 \leq b,k \leq 30n\)。

【算法】压位+线段树

【参考】GXZlegend

先考虑以每一位为下标开线段树,将一次加减法拆成log a次一个位的加减法。

考虑对位x加法,如果x为0直接加,如果x为1则向高位找到第一个0加上1,然后之间的区间全部置为0。

减法同理,如果x为1直接减,否则向高位找到第一个1减去,然后区间置1。

线段树维护区间是否全为0/1,复杂度\(O(30n \ \ log^2n)\)(log后面的数字不深究)。

考虑优化,每一位只记录0/1太浪费了,考虑每一位用int记录30位(数据范围有提示作用),这样每次加减就变成两个位的加减了。

按照上面的思路对位x加法,如果\(x<2^{30}-1\)直接加,否则向高位找到第一个满足\(x<2^{30}-1\)的数字加上,区间置为0。减法同理。

复杂度\(O(n \ \ log \ \ n)\)。

注意:

1.每次将修改前后两位数字的方法是分割后和\(2^{30}-1\)取与。

2.线段树二分:①整个区间是否可以跳过,②是否到了叶子,③尝试往左区间,不行再往右区间。

3.重点关注标记的传递,很容易写错。

4.这种题似乎只能静态差错……

#include<cstdio>
#include<cstring>
#include<algorithm>
bool isdigit(char c){return c>='0'&&c<='9';}
int read(){
int s=0,t=1;char c;
while(!isdigit(c=getchar()))if(c=='-')t=-1;
do{s=s*10+c-'0';}while(isdigit(c=getchar()));
return s*t;
}
using namespace std;
const int maxn=1000020,N=1000010,mx=(1<<30)-1,S=(1<<30);
int n,t1,t2,t3;
bool ok;
struct tree{int l,r,c,d,num;}t[maxn*4]; void up(int k){if(t[k<<1].c==t[k<<1|1].c)t[k].c=t[k<<1].c;else t[k].c=-1;}
void modify(int k,int x){t[k].c=t[k].d=x;if(x)t[k].num=mx;else t[k].num=0;}
void down(int k){
if(~t[k].d){
modify(k<<1,t[k].d);modify(k<<1|1,t[k].d);
t[k].d=-1;
}
}
void build(int k,int l,int r){
t[k].l=l;t[k].r=r;t[k].d=-1;t[k].c=0;t[k].num=0;
if(l==r)return;
int mid=(l+r)>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
int query(int k,int x){
if(t[k].l==t[k].r)return t[k].num;
down(k);
int mid=(t[k].l+t[k].r)>>1;
if(x<=mid)return query(k<<1,x);
else return query(k<<1|1,x);
}
void fix(int k,int x,int y){
if(t[k].l==t[k].r){t[k].num=y;t[k].c=-1;if(y==0)modify(k,0);if(y==mx)modify(k,1);return;}
down(k);
int mid=(t[k].l+t[k].r)>>1;
if(x<=mid)fix(k<<1,x,y);else fix(k<<1|1,x,y);
up(k);
}
void find_add(int k,int x){
if(t[k].c==1){modify(k,0);return;}
if(t[k].l==t[k].r){t[k].num++;if(t[k].num==mx)t[k].c=1;else t[k].c=-1;ok=1;return;}
down(k);
int mid=(t[k].l+t[k].r)>>1;
if(x>mid)find_add(k<<1|1,x);else{
find_add(k<<1,x);
if(!ok)find_add(k<<1|1,x);
}
up(k);
}
void find_del(int k,int x){
if(t[k].c==0){modify(k,1);return;}//
if(t[k].l==t[k].r){t[k].num--;if(t[k].num==0)t[k].c=0;else t[k].c=-1;ok=1;return;}//
down(k);
int mid=(t[k].l+t[k].r)>>1;
if(x>mid)find_del(k<<1|1,x);else{//
find_del(k<<1,x);
if(!ok)find_del(k<<1|1,x);
}
up(k);
}
void add(int x,int y){
int z=query(1,x);
fix(1,x,(z+y)%S);
ok=0;
if(z+y>mx)find_add(1,x+1);
}
void del(int x,int y){
int z=query(1,x);
fix(1,x,(z-y+S)%S);
ok=0;
if(z-y<0)find_del(1,x+1);
}
int main(){
n=read();t1=read();t2=read();t3=read();
build(1,1,N);
while(n--){
int kind=read();
if(kind==1){
int a=read(),b=read(),c=b/30;
if(a>0){
add(c+1,(a<<(b%30))&mx);
add(c+2,a>>(30-b%30));
}
else{
a=-a;
del(c+1,(a<<(b%30))&mx);
del(c+2,a>>(30-b%30));
}
}
else{
int x=read();
int y=query(1,x/30+1);
printf("%d\n",(y&(1<<(x%30)))?1:0);
}
}
return 0;
}

【NOI】2017 整数(BZOJ 4942,LOJ2302) 压位+线段树的更多相关文章

  1. 【bzoj4942】[Noi2017]整数 压位+线段树

    题目描述 P 博士将他的计算任务抽象为对一个整数的操作. 具体来说,有一个整数 $x$ ,一开始为0. 接下来有 $n$ 个操作,每个操作都是以下两种类型中的一种: 1 a b :将 $x$ 加上整数 ...

  2. BZOJ 4942 NOI2017 整数 (压位+线段树)

    题目大意:让你维护一个数x(x位数<=3*1e7),要支持加/减a*2^b,以及查询x的第i位在二进制下是0还是1 作为一道noi的题,非常考验写代码综合能力,敲+调+借鉴神犇的代码 3个多小时 ...

  3. LOJ 2302 「NOI2017」整数——压位线段树

    题目:https://loj.ac/problem/2302 压30位,a最多落在两个位置上,拆成两次操作. 该位置加了 a 之后,如果要进位或者借位,查询一下连续一段 0 / 1 ,修改掉,再在含有 ...

  4. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  5. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  6. [NOI 2017]整数

    Description 题库链接 P 博士将他的计算任务抽象为对一个整数的操作. 具体来说,有一个整数 \(x\) ,一开始为 \(0\) . 接下来有 \(n\) 个操作,每个操作都是以下两种类型中 ...

  7. 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并

    题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...

  8. bzoj 1537: [POI2005]Aut- The Bus 线段树

    bzoj 1537: [POI2005]Aut- The Bus 先把坐标离散化 设f[i][j]表示从(1,1)走到(i,j)的最优解 这样直接dp::: f[i][j] = max{f[i-1][ ...

  9. BZOJ 1012: [JSOI2008]最大数maxnumber 线段树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能: ...

随机推荐

  1. POJ 2431 (优先队列)

    题目链接:https://vjudge.net/problem/POJ-2431 思路: “ 在卡车行驶途中, 只有经过加油站才能加油.” 我们不妨转变思路, 理解成“当卡车驶过加油站时就获得了加油的 ...

  2. 每日scrum(7)

    今天是小组用来写文稿的日子,包括软件需求分析报告,概要设计报告,详细设计报告,数据库设计报告,软件测试报告,各组员领取自己的任务然后完成~ 任务看板: 燃尽图:

  3. DEP

    DEP(Data execution protect)数据执行保护,这个功能需要操作系统和硬件的共同支持才可以生效.DEP的原理就是在系统的内存页中设置了一个标志位,标示这个内存页的属性(可执行). ...

  4. Beta冲刺——day4

    Beta冲刺--day4 作业链接 Beta冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602134 王龙 ...

  5. node之文件的下载

    /** * 文件的下载 */ let express = require('express'); let app = express(); app.get('/',(req,res)=>{ re ...

  6. [日常工作] 并行计算引发Microsoft.jscript.ni.dll的内存溢出问题的分析解决. .net framework 的版本说明

    1. 性能组进行 单点性能测试时发现 商务智能的 并行分析有问题. 效率很低, 开发人员查看iis 的日志 发现错误原因是 Microsoft.jscript.ni.dll 有内存溢出的问题 开发人员 ...

  7. mybatis 注解和xml 优缺点

    xml: 增加了xml文件,修改麻烦,条件不确定(ifelse判断),容易出错,特殊转义字符比如大于小于 注释: 复杂sql不好用,搜集sql不方便,管理不方便,修改需重新编译 #和$区别: 相同 都 ...

  8. java学习一 path与classpath

    path 任意目录下执行 javac JAVA  classpath找到指定目录下的.class文件 前提是进入该文件目录里面 生成.class文件; 变量 的两个特性:1.约束了类型 2.约束了范围 ...

  9. 【刷题】LOJ 6121 「网络流 24 题」孤岛营救问题

    题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图.迷宫的外形是一个长方形 ...

  10. 解题:SPOJ 422 Transposing is Even More Fun

    题面 这种换来换去的东西很容易想到置换群那一套,然后题目甚至还暗示了二进制=.= 直接换的话显然是$2^{a+b}$次,但是一个循环节里可以少换一次,然后问题就变成了数循环节 在一个循环节里的位置有什 ...