版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Julialove102123/article/details/79200158

根据  caffe/src/caffe/proto/caffe.proto 里的文件,可以看到它有以下几种学习率的衰减速机制:

1. fixed:   在训练过程中,学习率不变;

2. step:  它的学习率的变化就像台价一样;step by step 的; 其中的 gamma 与 stepsize需要设置的;

学习率=base lr * gamma^(iter num / step)

3.exp :表示指数型的,其中参数 gamma 需要设置;

学习率=base_lr*gamma^iter

4. inv : 其中参数 gamma 与 power 都需要设置;

学习率 = base_lr*(1+gamma*iter)^(-power)

5.multistep: 可以设置多个 stepvalue的值, 在prototxt里面也没有具体介绍, 它由参数 stepsize 与 stepvalue 决定; 它不是每时第刻都去计算 学习率,而是达到我们设定的stepvalue的时候,才去计算(根据方法2中的公式),然后更新学习率; stepvalue 可以设置多个的,下面是 stepvalue的定义;

183   repeated int32 stepvalue = 34;

6.poly :多项式衰减 ,当到达最大次数时, 学习率变为了0;

lr = base_lr * (1 - iter/maxiter )^power

7.sigmoid形的:

lr = base_lr * (1 / (1+e^(-gamma*(iter-stepsize)) ))

。;

caffe中的学习率的衰减机制的更多相关文章

  1. pytorch中调整学习率的lr_scheduler机制

    有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整:一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaL ...

  2. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  3. CAFFE中训练与使用阶段网络设计的不同

    神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...

  4. tensorflow中常用学习率更新策略

    神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数 ...

  5. 在Caffe中实现模型融合

    模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设 ...

  6. caffe中train过程的train数据集、val数据集、test时候的test数据集区别

    val是validation的简称.training dataset 和 validation dataset都是在训练的时候起作用.而因为validation的数据集和training没有交集,所以 ...

  7. caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?

    在机器学习或者模式识别中,会出现overfitting,而当网络逐渐overfitting时网络权值逐渐变大,因此,为了避免出现overfitting,会给误差函数添加一个惩罚项,常用的惩罚项是所有权 ...

  8. TensorFlow中设置学习率的方式

    目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 ...

  9. caffe中LetNet-5卷积神经网络模型文件lenet.prototxt理解

    caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "Le ...

随机推荐

  1. 【Java】 子字符串的比较(substring的==与equal()使用)

    public class Test { public static void main(String[] args) { String str1="good"; System.ou ...

  2. 将NX模型导入Process Designer的方法

    如何把一个有焊点的零件从nx中输入到process designer 中?   用户在NX中做了一个prt文件, 想把它输入到process designer中, 并且包括焊点信息, 该如何做? 解决 ...

  3. 1257: [CQOI2007]余数之和

    题目链接 bzoj1257: [CQOI2007]余数之和 题解 数论分块,乘等差数列求和 代码 #include<bits/stdc++.h> using namespace std; ...

  4. 优美的爆搜?KDtree学习

    如果给你平面内一些点,让你求距离某一个指定点最近的点,应该怎么办呢? O(n)遍历! 但是,在遍历的过程中,我们发现有一些点是永远无法更新答案的. 如果我们把这些点按照一定顺序整理起来,省略对不必要点 ...

  5. 吴恩达-coursera-机器学习-week4

    第八.神经网络:表述(Neural Networks: Representation) 8.1 非线性假设 8.2 神经元和大脑 8.3 模型表示1 8.4 模型表示2 8.5 样本和直观理解1 8. ...

  6. UVALive 6906 Cluster Analysis 并查集

    Cluster Analysis 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemi ...

  7. 初始化collectionViewCell

    #import <UIKit/UIKit.h> @interface TonyCollectionViewCell : UICollectionViewCell @property UII ...

  8. android防止按钮连续点击方案之AOP

    转载请标明出处http://www.cnblogs.com/yxx123/p/6675567.html 防止连续点击的实现方式有很多种,比如,在所有的onclick里面加上防多次点击的代码,或者定义一 ...

  9. 使用 IntraWeb (4) - 页面布局之 TIWRegion

    TIWRegion 是容器, 首先布局好它(们). 在空白窗体上添加 4 个 TIWRegion, 然后: uses System.UITypes; //为使用 Anchors 属性 {下面代码中的设 ...

  10. ProFTPd Local pr_ctrls_connect Vulnerability - ftpdctl 漏洞及攻击代码分析

    攻击代码网址:http://www.exploit-db.com/exploits/394/ 1.执行环境: 1.ProFTPD 1.3.0/1.3.0a 2.编译ProFTPD时.--enable- ...