洛谷.4721.[模板]分治FFT(NTT)
换一下形式:$$f_i=\sum_{j=0}^{i-1}f_jg_{i-j}$$
然后就是分治FFT模板了$$f_{i,i\in[mid+1,r]}=\sum_{j=l}{mid}f_jg_{i-j}+\sum_{j=mid+1}rf_jg_{i-j}$$
复杂度\(O(n\log^2n)\)。
分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html
多项式求逆做法先坑着。
//693ms 4.91MB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define G 3
#define inv_G 332748118
#define mod 998244353
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=(1<<18)+5;
int rev[N],A[N],B[N],f[N],g[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL FP(LL x,int k)
{
LL t=1;
for(; k; k>>=1,x=x*x%mod)
if(k&1) t=t*x%mod;
return t;
}
void NTT(int *a,int lim,int type)
{
for(int i=1; i<lim; ++i) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
LL Wn=FP(~type?G:inv_G,(mod-1)/i);
for(int j=0; j<lim; j+=i)
{
LL w=1,t;
for(int k=0; k<mid; ++k,w=w*Wn%mod)
a[j+k+mid]=(a[j+k]-(t=w*a[j+k+mid]%mod)+mod), Mod(a[j+k+mid]),
Add(a[j+k],t);
}
}
if(type==-1) for(int i=0,inv=FP(lim,mod-2); i<lim; ++i) a[i]=1ll*a[i]*inv%mod;
}
void Calc(int *a,int l1,int *b,int l2)
{
int lim=1,l=-1;
while(lim<=l1/*!*/) ++l,lim<<=1;
for(int i=1; i<lim; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
for(int i=0; i<l1; ++i) A[i]=a[i];
for(int i=l1; i<lim; ++i) A[i]=0;
for(int i=0; i<l2; ++i) B[i]=b[i];
for(int i=l2; i<lim; ++i) B[i]=0;
NTT(A,lim,1), NTT(B,lim,1);
for(int i=0; i<lim; ++i) A[i]=1ll*A[i]*B[i]%mod;//not a,b
NTT(A,lim,-1);
}
void CDQ(int l,int r)
{
if(l==r) return;
int mid=l+r>>1; CDQ(l,mid);
Calc(g+1,r-l,f+l,mid-l+1);
for(int i=mid+1; i<=r; ++i) Add(f[i],A[i-l-1]);
CDQ(mid+1,r);
}
int main()
{
int n=read();
for(int i=1; i<n; ++i) g[i]=read();
f[0]=1, CDQ(0,n-1);
for(int i=0; i<n; ++i) printf("%d ",f[i]);
return 0;
}
洛谷.4721.[模板]分治FFT(NTT)的更多相关文章
- 解题:洛谷4721 [模板]分治FFT
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
- 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)
题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...
随机推荐
- mysql 不同引擎的比较
mysql 支持的默认引擎是InnoDB,其他的常用引擎包括MyISAM等,那么他们有什么差别呢. 首先执行 show engines; 来查看数据库当前支持的引擎. 可以看到mysql支持这么多不同 ...
- 【Linux】MySQL安装及允许远程访问
安装环境/工具 Linux( centOS 版) MySQL(MySQL-5.6.28-1.el7.x86_64.rpm-bundle.tar版) 安装步骤 1.解压mysql安装文件 命令:tar ...
- elasticsearch-dump 迁移es数据 (elasticdump)
elasticsearch 部分查询语句 # 获取集群的节点列表: curl 'localhost:9200/_cat/nodes?v' # 列出所有索引: curl 'localhost:9200/ ...
- 最好用的xshell替代软件----FinalShell工具
2017年8月份NetSarang公司旗下软件家族的官方版本被爆被植入后门着实让我们常用的Xshell,Xftp等工具火了一把,很长时间都是在用Xshell,不过最近发现了一款同类产品FinalShe ...
- Export SQLite data to Excel in iOS programmatically(OC)
//For the app I have that did this, the SQLite data was fairly large. Therefore, I used a background ...
- 【洛谷P2420】让我们异或吧
题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能 ...
- 第12月第30天 love2d
1. Linux On Linux, you can use one of these command lines: love /home/path/to/gamedir/ love /home/pa ...
- LeetCode-Valid Number - 有限状态机
判断合法数字,之前好像在哪里看到过这题, 记得当时还写了好久,反正各种改, 今天看到了大神的解法(https://github.com/fuwutu/LeetCode/blob/master/Vali ...
- TensorFlow 从零到helloWorld
目录 1.git安装与使用 1.1 git安装 1.2 修改git bash默认路径 1.3 git常用操作 2.环境搭建 2.1 tensorflow安装 2.2 CUDA安装 2.3 ...
- Robotium_断言方法assert、is、search
下面的这些方法都主要用来判断测试结果是否与预期结果相符,一般把is和search方法放在assert里面判断.assert最常用的还是assertThat方法,是Junit的判断,这里就不多说了.断言 ...