# include <stdio.h>

 # define MAX_VERTEXES //最大顶点数
# define MAXEDGE //边集数组最大值
# define INFINITY //代表不可能的数(无穷大) typedef struct
{//图 结构体定义
int arc[MAX_VERTEXES][MAX_VERTEXES];//二位数组 矩阵
int numVertexes, numEdges;//当前图中的顶点数和边数 }MGraph; typedef struct
{//边集数组 结构体定义
int begin;
int end;
int weight; }Edge; void CreateMGraph (MGraph *G)
{//创建
int i, j;
//下面是已经输入好的
G->numVertexes = ;
G->numEdges = ; for (i=; i<G->numVertexes; i++)
for (j=; j<G->numVertexes; j++)
if (i == j)
G->arc[i][j] = ;
else
G->arc[i][j] = G->arc[j][i] = INFINITY; G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=; for (i=; i<G->numVertexes; i++)
for (j=i+; j<G->numVertexes; j++)//矩阵的上三角,然后对称矩阵的下三角
G->arc[j][i] = G->arc[i][j];//对称
} void swapn (Edge *edges, int i, int j)
{//交换权值
int temp; //起始
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp; //结束
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp; //权值
temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp; return ;
} void sort (Edge edges[], MGraph *G)
{//对权值进行排序
int i, j;
for (i=; i<G->numEdges; i++)
for (j=i+; j<G->numEdges; j++)//对存入有效边(两端点的权值)进行冒泡排序
if (edges[i].weight > edges[j].weight)
swapn (edges, i, j);//交换权值 printf ("排序过后:\n");
for (i=; i<G->numEdges; i++)
printf ("边:(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight); return ;
} int Find (int *parent, int f)//★
{// 查找连线顶点的尾部下标
//走过的路都有记录,如果走已经走过的路的话,那么返回的值(n=m);
while (parent[f] > )
f = parent[f];
return f;
} void MiniSpanTree_Kruskal (MGraph G)
{//克鲁斯卡尔算法
int i, j, n, m;
int k = ;
int parent[MAX_VERTEXES];//定义一维数组判断是否形成环路
Edge edges[MAXEDGE];//定义边集数组 for (i=; i<G.numVertexes; i++)//存储有效的边(两个端点和权值)
for (j=i+; j<G.numVertexes; j++)//矩阵上三角进行比较,因为对称,所以比较一半更节约时间
if (G.arc[i][j] < INFINITY)
{
edges[k].begin = i;
edges[k].end = j;
edges[k ++].weight = G.arc[i][j];
}
sort(edges, &G);//排序 for (i=; i<G.numVertexes; i++)
parent[i] = ; printf ("\n打印最小生成树:\n");
for (i=; i<G.numEdges; i++)
{
n = Find (parent, edges[i].begin);//★
m = Find (parent, edges[i].end);//★
if (n != m)
{
parent[n] = m;
printf ("边(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
} int main (void) {
MGraph G;
CreateMGraph (&G);//创建
MiniSpanTree_Kruskal (G);//克鲁斯卡尔 算法 return ;
} /*
在vc++6.0运行结果: 排序过后:
边:(4,7) 权值:7
边:(2,8) 权值:8
边:(0,1) 权值:10
边:(0,5) 权值:11
边:(1,8) 权值:12
边:(3,7) 权值:16
边:(1,6) 权值:16
边:(5,6) 权值:17
边:(1,2) 权值:18
边:(6,7) 权值:19
边:(3,4) 权值:20
边:(3,8) 权值:21
边:(2,3) 权值:22
边:(3,6) 权值:24
边:(4,5) 权值:26 打印最小生成树:
边(4,7) 权值:7
边(2,8) 权值:8
边(0,1) 权值:10
边(0,5) 权值:11
边(1,8) 权值:12
边(3,7) 权值:16
边(1,6) 权值:16
边(6,7) 权值:19
Press any key to continue
*/

克鲁斯卡尔(Kruskal)算法的更多相关文章

  1. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  2. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  3. 图解最小生成树 - 克鲁斯卡尔(Kruskal)算法

    我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树 ...

  4. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  5. 最小生成树——Kruskal(克鲁斯卡尔)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 ...

  6. 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  7. 最小生成树之克鲁斯卡尔(kruskal)算法

    #include <iostream> #include <string> using namespace std; typedef struct MGraph{ string ...

  8. 数据结构与算法——克鲁斯卡尔(Kruskal)算法

    目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 ...

  9. 图->连通性->最小生成树(克鲁斯卡尔算法)

    文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...

随机推荐

  1. 求绝对值,hdu-2003

    求绝对值 Problem Description 求实数的绝对值.   Input 输入数据有多组,每组占一行,每行包含一个实数.   Output 对于每组输入数据,输出它的绝对值,要求每组数据输出 ...

  2. 翻译题(map使用)

    What Are You Talking About 点我 Problem Description Ignatius is so lucky that he met a Martian yesterd ...

  3. c语言 列出系统进程

    #include <stdio.h> #include "stdafx.h" #include <Windows.h> #include <strin ...

  4. XML的命名空间

    XML命名空间提供避免元素命名冲突的方法. 命名冲突:在XML中,元素名称是由开发者定义的,当两个不同的文档使用相同的元素名时,就会发生命名冲突. 这个XML文档携带着某个表格中的信息: <ta ...

  5. CRAHNs: Cognitive radio ad hoc networks

    2009 Elsevier 综述了认知无线AD Hoc网络中的各个方面的研究进展及面临的挑战.包括传输层.网络层.链路层的协议设计. 根据CCC(common control channel)的实现思 ...

  6. bug fix: openstack can not run swift for pyeclib and liberasurecode do not match

    最近在使用devstack 安装openstack nimble项目. nimble项目是一个专业的baremetal管理项目. 安装过程中,遇到这个问题. /opt/stack/swift/bin/ ...

  7. OC基础14:使用文件

    "OC基础"这个分类的文章是我在自学Stephen G.Kochan的<Objective-C程序设计第6版>过程中的笔记. 1.对于NSFileManager类,文件 ...

  8. SQL_SERVER日期函数详细用法

    1.一个月第一天的 Select DATEADD(mm, DATEDIFF(mm,0,getdate()), 0) 2.本周的星期一 Select DATEADD(wk, DATEDIFF(wk,0, ...

  9. 【27前端】字体图标 Font Face

    设计师做的高保真原型图,难免会用到艺术字体. 采用切片的方式,简单,粗暴,节省时间.除了retina屏其它兼容性也是一流.但是在修改的时候,会花很大的力气.即使只是修改文字大小,也需要重新切图,更别说 ...

  10. Sublime 学习记录(五) Sublime 其他插件(个人喜好)

    (一)  JSFormat 安装 :命令面板 pci 回车 JSFormat 回车 功能 : javascript的代码格式化插件 简介 : 很多网站的JS代码都进行了压缩,一行式的甚至混淆压缩,这让 ...