克鲁斯卡尔(Kruskal)算法
# include <stdio.h> # define MAX_VERTEXES //最大顶点数
# define MAXEDGE //边集数组最大值
# define INFINITY //代表不可能的数(无穷大) typedef struct
{//图 结构体定义
int arc[MAX_VERTEXES][MAX_VERTEXES];//二位数组 矩阵
int numVertexes, numEdges;//当前图中的顶点数和边数 }MGraph; typedef struct
{//边集数组 结构体定义
int begin;
int end;
int weight; }Edge; void CreateMGraph (MGraph *G)
{//创建
int i, j;
//下面是已经输入好的
G->numVertexes = ;
G->numEdges = ; for (i=; i<G->numVertexes; i++)
for (j=; j<G->numVertexes; j++)
if (i == j)
G->arc[i][j] = ;
else
G->arc[i][j] = G->arc[j][i] = INFINITY; G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=;
G->arc[][]=; for (i=; i<G->numVertexes; i++)
for (j=i+; j<G->numVertexes; j++)//矩阵的上三角,然后对称矩阵的下三角
G->arc[j][i] = G->arc[i][j];//对称
} void swapn (Edge *edges, int i, int j)
{//交换权值
int temp; //起始
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp; //结束
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp; //权值
temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp; return ;
} void sort (Edge edges[], MGraph *G)
{//对权值进行排序
int i, j;
for (i=; i<G->numEdges; i++)
for (j=i+; j<G->numEdges; j++)//对存入有效边(两端点的权值)进行冒泡排序
if (edges[i].weight > edges[j].weight)
swapn (edges, i, j);//交换权值 printf ("排序过后:\n");
for (i=; i<G->numEdges; i++)
printf ("边:(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight); return ;
} int Find (int *parent, int f)//★
{// 查找连线顶点的尾部下标
//走过的路都有记录,如果走已经走过的路的话,那么返回的值(n=m);
while (parent[f] > )
f = parent[f];
return f;
} void MiniSpanTree_Kruskal (MGraph G)
{//克鲁斯卡尔算法
int i, j, n, m;
int k = ;
int parent[MAX_VERTEXES];//定义一维数组判断是否形成环路
Edge edges[MAXEDGE];//定义边集数组 for (i=; i<G.numVertexes; i++)//存储有效的边(两个端点和权值)
for (j=i+; j<G.numVertexes; j++)//矩阵上三角进行比较,因为对称,所以比较一半更节约时间
if (G.arc[i][j] < INFINITY)
{
edges[k].begin = i;
edges[k].end = j;
edges[k ++].weight = G.arc[i][j];
}
sort(edges, &G);//排序 for (i=; i<G.numVertexes; i++)
parent[i] = ; printf ("\n打印最小生成树:\n");
for (i=; i<G.numEdges; i++)
{
n = Find (parent, edges[i].begin);//★
m = Find (parent, edges[i].end);//★
if (n != m)
{
parent[n] = m;
printf ("边(%d,%d) 权值:%d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
} int main (void) {
MGraph G;
CreateMGraph (&G);//创建
MiniSpanTree_Kruskal (G);//克鲁斯卡尔 算法 return ;
} /*
在vc++6.0运行结果: 排序过后:
边:(4,7) 权值:7
边:(2,8) 权值:8
边:(0,1) 权值:10
边:(0,5) 权值:11
边:(1,8) 权值:12
边:(3,7) 权值:16
边:(1,6) 权值:16
边:(5,6) 权值:17
边:(1,2) 权值:18
边:(6,7) 权值:19
边:(3,4) 权值:20
边:(3,8) 权值:21
边:(2,3) 权值:22
边:(3,6) 权值:24
边:(4,5) 权值:26 打印最小生成树:
边(4,7) 权值:7
边(2,8) 权值:8
边(0,1) 权值:10
边(0,5) 权值:11
边(1,8) 权值:12
边(3,7) 权值:16
边(1,6) 权值:16
边(6,7) 权值:19
Press any key to continue
*/
克鲁斯卡尔(Kruskal)算法的更多相关文章
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...
- 图解最小生成树 - 克鲁斯卡尔(Kruskal)算法
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树 ...
- 克鲁斯卡尔(Kruskal)算法求最小生成树
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...
- 最小生成树——Kruskal(克鲁斯卡尔)算法
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 Kruskal(克鲁斯卡尔)算法 的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 ...
- 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...
- 最小生成树之克鲁斯卡尔(kruskal)算法
#include <iostream> #include <string> using namespace std; typedef struct MGraph{ string ...
- 数据结构与算法——克鲁斯卡尔(Kruskal)算法
目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 ...
- 图->连通性->最小生成树(克鲁斯卡尔算法)
文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成 ...
随机推荐
- 定制样式插入到ueditor
AngularJs定制样式插入到ueditor中的问题总结 总结一下自己给编辑器定制样式的过程中所遇到的问题,主要是编辑器的二次开发接口,以及用angular定制样式,问题不少,终于在**的帮助下,完 ...
- MEMS陀螺仪—MEMS产品中的杀手
MEMS陀螺仪(gyroscope)将成为MEMS产品的杀手.它已经被大量地应用在消费和汽车产品上.它的性能每两年提高十倍,它的成本却由于集成度和需求量的提高而不断下降.一旦MEMS陀螺仪的价格下降到 ...
- MEMS陀螺仪(gyroscope)的结构
MEMS陀螺仪(gyroscope)的设计和工作原理可能各种各样,但是公开的MEMS陀螺仪均采用振动物体传感角速度的概念.利用振动来诱导和探测科里奥利力而设计的MEMS陀螺仪没有旋转部件.不需要轴承, ...
- Lipschitz连续【zz】
转载地址:http://moosewoler.blog.163.com/blog/static/6986605201242643122296/ 李普希兹连续是以德国数学家Rudolf Lipschit ...
- lamp apache配置虚拟主机
You don't have permission to access /index.php on this server
- TransactionScope使用说明 【转】
TransactionScope是.Net Framework 2.0滞后,新增了一个名称空间.它的用途是为数据库访问提供了一个“轻量级”[区别于:SqlTransaction]的事物.使用之前必须添 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- 解决Mac OS Adobe Flash Builder 4.7 java heap space 问题【转】
1. 在Finder中打开Adobe Flash Builder 4.7的安装目录 2. 在Adobe Flash Builder 4.7.app上点击右键“Show Package contents ...
- Android(一)
Android Activity TextView,Button 1.在fragment_main.xml文件中直接添加控件 2.在MainActivity.java文件中添加TextView控件 在 ...
- [jQuery]无法获取隐藏元素(display:none)宽度(width)和高度(height)的新解决方案
在做茶城网改版工作的时候,又遇到一个新问题,我需要用jQuery写一个通过点击左右图标来翻阅图片的小插件,写好后测试可以正常运行,但是放到Tab中后发现只有第一个Tab中的代码能够正常运行,其它全部罢 ...