F - Eight Puzzle

Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others)
Submit Status

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a4 by 4 frame with one tile missing. Let's call the missing tile x; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x

where the only legal operation is to exchange x with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4   1  2  3  4   1  2  3  4   1  2  3  4 

 5  6  7  8   5  6  7  8   5  6  7  8   5  6  7  8 

 9  x 10 12   9 10  x 12   9 10 11 12   9 10 11 12 

13 14 11 15  13 14 11 15   13 14  x 15  13 14 15 x 

            r->          d->           r->

The letters in the previous row indicate which neighbor of the x tile is swapped with the x tile at each step; legal values are r,l,u and d, for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing x tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement. To simplify this problem, you should print the minimum steps only.

Input

There are multiple test cases.

For each test case, you will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus x. For example, this puzzle

1 2 3

x 4 6

7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word unsolvable, if the puzzle has no solution.Otherwise, output an integer which equals the minimum steps.

Sample input and output

Sample Input Sample Output
1 2 x 4 5 3 7 8 6
2

Hint

Any violent algorithm may gain TLE. So a smart method is expected.

The data used in this problem is unofficial data prepared by hzhua. So any mistake here does not imply mistake in the offcial judge data.

解题报告:

HINT部分已经知道本题数据很强,因此暂时不考虑普通bfs,那么我们可以考虑双广和A*两种算法..

关于两种方法的结果:

1.A*超时

2.双广AC

可能的原因:首先如果没有解,都退化成普通bfs,这点并没有区别,那么只能说明在有解的时候双广比A*高效很多

当然效率还可以进一步提升,那就是奇偶性剪枝,想了解的话可以百度

双广代码(有奇偶性剪枝)

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int maxhashsize = + ;
const int maxstatussize = 1e6 + ;
int vis1[maxhashsize],vis2[maxhashsize];
int fac[];
int dir[][] = {-,,,,,-,,}; typedef struct status
{
char s[] , step;
int val;
}; status q1[maxstatussize],q2[maxstatussize]; int gethashvalue(const status &x)
{
int res = ;
for(int i = ; i < ; ++ i)
{
int cot = ;
for(int j = i+ ; j < ; ++ j)
if (x.s[i] > x.s[j])
cot++;
res += fac[-i]*cot;
}
return res;
} status st,ed; int bfs()
{
int front1 = , rear1 = ;
int front2 = , rear2 = ;
q1[rear1++] = st;
q2[rear2++] = ed;
if (st.val == ed.val )
return ;
while(front1 < rear1 || front2 < rear2)
{
//
{
status ns = q1[front1++];
int x,y,step = ns.step,oripos;
for(int i = ; i < ; ++ i)
if (!ns.s[i])
{
x = i / ;
y = i % ;
oripos = i;
break;
}
for(int i = ; i < ; ++ i)
{
int newx = x + dir[i][];
int newy = y + dir[i][];
if (newx >= || newx < || newy >= || newy < )
continue;
int newpos = newx*+newy;
status ss;
memcpy(&ss,&ns,sizeof(struct status));
swap(ss.s[newpos],ss.s[oripos]);
int newhash = gethashvalue(ss);
if (vis1[newhash] != -)
continue;
ss.step ++ ;
if (vis2[newhash] != -)
return ss.step + vis2[newhash];
vis1[newhash] = ss.step;
ss.val = newhash;
q1[rear1++] = ss;
}
}
//**************************
{
status ns = q2[front2++];
int x,y,step = ns.step,oripos;
for(int i = ; i < ; ++ i)
if (!ns.s[i])
{
x = i / ;
y = i % ;
oripos = i;
break;
}
for(int i = ; i < ; ++ i)
{
int newx = x + dir[i][];
int newy = y + dir[i][];
if (newx >= || newx < || newy >= || newy < )
continue;
int newpos = newx*+newy;
status ss;
memcpy(&ss,&ns,sizeof(struct status));
swap(ss.s[newpos],ss.s[oripos]);
int newhash = gethashvalue(ss);
if (vis2[newhash] != -)
continue;
ss.step ++ ;
if (vis1[newhash] != -)
return ss.step + vis1[newhash];
vis2[newhash] = ss.step;
ss.val = newhash;
q2[rear2++] = ss;
}
}
}
return -;
} bool input()
{
char ch = getchar();
if (ch == EOF) return false;
memset(vis1,-,sizeof(vis1));
memset(vis2,-,sizeof(vis2));
if (ch == 'x')
st.s[] = ;
else
st.s[] = ch-'';
getchar();
for(int i = ; i <= ; ++ i)
{
ch = getchar();getchar();
if (ch == 'x')
st.s[i] = ;
else
st.s[i] = ch-'';
}
st.step = ;
vis1[gethashvalue(st)] = ; // Init for vis
st.val = gethashvalue(st);
vis2[gethashvalue(ed)] = ;
ed.val = gethashvalue(ed);
return true;
} int main(int argc,char *argv[])
{
fac[] = ;
for(int i = ; i <= ; ++ i)
fac[i] = i*fac[i-];
for(int i = ; i < ; ++ i)
ed.s[i] = i + ;
ed.s[] = ;
ed.step = ;
while(input())
{
int sum = ;
//奇偶性判断
for(int i = ; i < ; ++ i)
{
if (st.s[i] == )
continue;
for(int j = ; j < i ; ++ j)
if (st.s[j] > st.s[i])
sum++;
}
if ( sum % & )
{
cout << "unsolvable" << endl;
continue;
}
int ans = bfs();
if (ans == -)
cout << "unsolvable" << endl;
else
cout << ans << endl;
}
return ;
}

UESTC_Eight Puzzle 2015 UESTC Training for Search Algorithm & String<Problem F>的更多相关文章

  1. UESTC_韩爷的梦 2015 UESTC Training for Search Algorithm & String<Problem N>

    N - 韩爷的梦 Time Limit: 200/100MS (Java/Others)     Memory Limit: 1300/1300KB (Java/Others) Submit Stat ...

  2. UESTC_Palindromic String 2015 UESTC Training for Search Algorithm & String<Problem M>

    M - Palindromic String Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 128000/128000KB (Java ...

  3. UESTC_秋实大哥の恋爱物语 2015 UESTC Training for Search Algorithm & String<Problem K>

    K - 秋实大哥の恋爱物语 Time Limit: 5000/2000MS (Java/Others)     Memory Limit: 32000/32000KB (Java/Others) Su ...

  4. UESTC_吴队长征婚 2015 UESTC Training for Search Algorithm & String<Problem E>

    E - 吴队长征婚 Time Limit: 10000/4000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  5. UESTC_基爷的中位数 2015 UESTC Training for Search Algorithm & String<Problem D>

    D - 基爷的中位数 Time Limit: 5000/3000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  6. UESTC_基爷与加法等式 2015 UESTC Training for Search Algorithm & String<Problem C>

    C - 基爷与加法等式 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Subm ...

  7. UESTC_邱老师降临小行星 2015 UESTC Training for Search Algorithm & String<Problem B>

    B - 邱老师降临小行星 Time Limit: 10000/5000MS (Java/Others)     Memory Limit: 65536/65535KB (Java/Others) Su ...

  8. UESTC_Ferris Wheel String 2015 UESTC Training for Search Algorithm & String<Problem L>

    L - Ferris Wheel String Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 43000/43000KB (Java/ ...

  9. UESTC_全都是秋实大哥 2015 UESTC Training for Search Algorithm & String<Problem J>

    J - 全都是秋实大哥 Time Limit: 5000/2000MS (Java/Others)     Memory Limit: 32000/32000KB (Java/Others) Subm ...

随机推荐

  1. 网站10大致命SEO错误

    1.关键字堆砌 我想不出有比胡乱将这些复制的内容放在网站上更差劲的事情了.网站复制一遍又一遍,你肯定也不想看到这么差劲的网站复制. 你在明白我在做什么吗?我并不是一个那么差劲的编辑者,我只是想说明一个 ...

  2. poj3299

                                                                                                         ...

  3. <转载>僵尸进程

    转载http://www.cnblogs.com/scrat/archive/2012/06/25/2560904.html 什么是僵尸进程 僵尸进程是指它的父进程已经退出(父进程没有等待(调用wai ...

  4. fcntl,F_GETFL,F_SETFL,flags

    1.获取文件的flags,即open函数的第二个参数: flags = fcntl(fd,F_GETFL,0); 2.设置文件的flags: fcntl(fd,F_SETFL,flags); 3.增加 ...

  5. The account is locked

    SQL> select * from v$version where rownum=1; BANNER --------------------------------------------- ...

  6. 《JavaScript 闯关记》之作用域和闭包

    作用域和闭包是 JavaScript 最重要的概念之一,想要进一步学习 JavaScript,就必须理解 JavaScript 作用域和闭包的工作原理. 作用域 任何程序设计语言都有作用域的概念,简单 ...

  7. FullCalendar 的学习笔记(一)

    前一段时间,一个老项目需要新增一个小功能,日程表~ 于是网上找了下,发现FullCalendar这个控件还不错于是就拿来用了下,下面简单介绍下我的学习笔记. 首先就是了解下FullCalendar的A ...

  8. IBM SPSS Modeler 预测建模基础(一)

    1.搜索下载IBM SPSS Modeler 14.1 32位 及 IBM SPSS Modeler 14.1 注册文件(破解布丁): 2.下载train.csv 及 test.csv: train. ...

  9. Linux脚本中使用特定JDK

    有时linux系统中装了很多应用,我们又不能覆盖系统中设置的版本,此时我们就需要在脚本文件中设置特定版本. export JAVA_HOME= export CLASSPATH=.:$JAVA_HOM ...

  10. kinect

    1.学习资料 http://blog.csdn.net/dustpg/article/details/37982311 https://github.com/mdkus/kinect-mssdk-op ...