题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695

题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序。

思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序。我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情况。对于i<=b,因为第一位[1, i]都可以取到,互质的对数就是欧拉函数值。现在考虑i位于[b/k+1, d/k],此时我们要用b - [1, b/k]中与i不互质数的个数,那么关键问题就是求[1, b/k]中与i不互质数的个数,我们将i分解质因子,在b/k范围内每个因子的倍数肯定与i不互质。设i的素因子分别的p1,p2...pk,则1..b/k中p1的倍数组成集合A1,p2的倍数组成集合A2,p3到A3.....pk到Ak, 由于集合中会出现重复的元素,所以用容斥原理来求A1并A2并A3.....并Ak的元素的数的个数。区间中与i不互质的个数 = (区间中i的每个质因数的倍数个数)-(区间中i的每两个质因数乘积的倍数)+(区间中i的每3个质因数的乘积的倍数个数)-(区间中i的每4个质因数的乘积)+ ...

code:

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = ; LL phi[MAXN]; // 欧拉函数的和
int num[MAXN]; // 素因子个数
int p[MAXN][]; // 素因子 void init()
{
memset(phi, , sizeof(phi));
memset(num, , sizeof(num));
phi[] = 1L;
for (int i = ; i < MAXN; ++i) {
if (!phi[i]) {
for (int j = i; j < MAXN; j += i) {
if (!phi[j]) phi[j] = j;
phi[j] = phi[j] * (i - ) / i;
p[j][num[j]++] = i;
}
}
phi[i] += phi[i - ];
}
} LL dfs(int idx, int b, int now) // 求不大于b的数中,与now不互质的数的个数;
{
LL ret = ;
for (int i = idx; i < num[now]; ++i) { // 容斥原理来求A1并A2并A3.....并Ak的元素的数的个数
ret += b / p[now][i] - dfs(i + , b / p[now][i], now);
}
return ret;
} int main()
{
init();
int nCase;
scanf("%d", &nCase);
for (int cas = ; cas <= nCase; ++cas) {
int a, b, c, d, k;
scanf("%d %d %d %d %d", &a, &b, &c, &d, &k);
if (k == ) {
printf("Case %d: 0\n", cas);
continue;
}
if (b > d) swap(b, d);
b /= k;
d /= k;
LL ans = phi[b];
for (int i = b + ; i <= d; ++i) {
ans += b - dfs(, b, i); // 求不大于b的数中,与i不互质的数的个数
}
printf("Case %d: %lld\n", cas, ans);
}
return ;
}

HDU 1695 GCD(欧拉函数+容斥原理)的更多相关文章

  1. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  3. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  7. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  8. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  9. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. [LeetCode][Python]17: Letter Combinations of a Phone Number

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 17: Letter Combinations of a Phone Numb ...

  2. [LeetCode][Python]Regular Expression Matching

    # -*- coding: utf8 -*-'''https://oj.leetcode.com/problems/regular-expression-matching/ Implement reg ...

  3. 限制div高度当内容多了溢出时显示滚动条

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type"content= ...

  4. iOS深入学习 (Block全面分析)

    本文翻译自苹果的文档,有删减,也有添加自己的理解部分. 如果有Block语法不懂的,可以参考fuckingblocksyntax,里面对于Block 为了方便对比,下面的代码我假设是写在ViewCon ...

  5. 如何解决innnerText的兼容性问题

    //获dom对象的innerText的取值 function getInnerText(element) { //判断当前浏览器是否支持innerText if(typeof element.inne ...

  6. C#高效导出Excel(IList转DataTable,DataSet)

    微软的Excel操作类导出Excel会很慢,此方法简单的把表中内容以字符串的形式写入到Excel中,用到的一个技巧就是"\t". C#中的\t相当于Tab键,写入到Excel中时就 ...

  7. setTimeOut和setInterval详解

    setTimeout和setInterval的语法相同.它们都有两个参数,一个是将要执行的代码字符串,还有一个是以毫秒为单位的时间间隔,当过了那个时间段之后就将执行那段代码.不过这两个函数还是有区别的 ...

  8. javascript封装自定义滚动条方法,可自定义四个边框滚动条

    还是根据我的个人习惯封装了一个方法 setScroll({ box :父盒子DOM对象, content : 内容盒子DOM对象, scrollall : 滚动条大盒子DOM对象, scroll : ...

  9. java selenium webdriver实战 seleniumIDE

    Selenium是ThoughtWorks公司,一个名为Jason Huggins的测试为了减少手工测试的工作量,自己实现的一套基于Javascript语言的代码库 使用这套库可以进行页面的交互操作, ...

  10. Javascript 风格向导

    序   大部分针对Javascript最合理的方法归纳.   类型   • 原始类型:我们可以直接使用值. ο string ο number ο boolean ο null ο undefined ...