207. Course Schedule

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

问题:已知课程数量,以及各个课程间的依赖关系,求是否可以满足所有依赖关系把课程上完。

这是典型的拓扑排序应用场景。是否满足所有依赖关系,实际上就是求,在课程为节点、依赖关系为边的图中,是否存在环。若存在还,则不可能满足所有依赖关系把课程上完,反之,则可能。

使用DFS 方式遍历图中的节点。使用白、灰、黑三种颜色表示 DFS 在图中遍历进度。

当前节点被访问时的颜色含义:

  • 白色:当前节点首次被访问。说明可以继续深度探索。
  • 灰色:当前节点已在当前的 DFS 路径中。说明存在环。
  • 黑色:当前节点已经从节点出发的后续路径已全部被访问。

判断1 : 一个节点以及从该节点出发的后续路径是否存在环:

  • 若该节点为白色,则将颜色改为灰色,表示该节点已在搜索路径上。继续深度遍历节点的邻居节点,直达所有邻接节点已经邻居节点的后续节点都已全部被访问,将该节点改为黑色。不存在环。
  • 若该节点为灰色,表示该节点以及在 DFS 搜索路径上,存在环。退出程序。
  • 若该节点为黑色,表示节点已经后续路径已全部被访问,无需在探索。不存在环。

对所有节点都进行判断1 检查,即可知道图中是否存在环。

 const int WHITE = ;
const int GRAY = ;
const int BLACK = ; class gnode{
public:
int val;
int col;
vector<gnode*> neighbours; gnode(int val){
this->val = val;
}
}; // 当要访问的节点颜色为灰色时,表示该节点已在搜索路径中,则形成了环。有还,无法完成。
bool canFinshNode(gnode* node){ if (node->col == WHITE) {
node->col = GRAY;
}else if(node->col == BLACK){
return true;
}else{
// be gray
return false;
} for (int i = ; i < node->neighbours.size(); i++) {
gnode* tmpn = node->neighbours[i];
bool res = canFinshNode(tmpn);
if (res == false) {
return false;
}
} node->col = BLACK; return true;
} bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) { map<int, gnode*> val_node;
for (int i = ; i < numCourses; i++) {
gnode* node = new gnode(i);
node->col = WHITE;
val_node[i] = node;
} pair<int, int> pp;
for (int i = ; i < prerequisites.size(); i++) {
pp = prerequisites[i];
val_node[pp.second]->neighbours.push_back(val_node[pp.first]);
} map<int, gnode*>::iterator m_iter;
for (m_iter = val_node.begin(); m_iter != val_node.end(); m_iter++) {
if (m_iter->second->col == WHITE) { bool res = canFinshNode(m_iter->second);
if (res == false) {
return false;
}
}
} return true;
}

210. Course Schedule II

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]

4, [[1,0],[2,0],[3,1],[3,2]]

There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].

问题:和上面问题相似,不同的是需要额外求出可行的一个课程安排顺序。

典型的拓扑排序问题,而且这次需要求确切的拓扑顺序。

虽然 问题1 中的代码只回答了是否有可能存在拓扑顺序,但是,实际上在求解过程中已经将拓扑顺序求出来了。所有只需要将少量代码,将求出的顺序保存并返回即可。

当一个节点变为黑色,则表示该节点课程所依赖的后续课程都已排序,新变黑得节点就是下一个被排序的课程。

 const int WHITE = ;
const int GRAY = ;
const int BLACK = ; class gnode{
public:
int val;
int col;
vector<gnode*> neighbours; gnode(int val){
this->val = val;
}
}; vector<int> resVec; /**
* To varify if the path which souce is node has a circle .
* If has a circle, return false;
* If has no circle, push node into res vector after visit the neighbours of node, and return true;
*
*/
bool visit(gnode* node){ if (node->col == WHITE) {
node->col = GRAY;
}else if (node->col == BLACK){
return true;
}else{
// be Gray, has a circle.
return false;
} for (int i = ; i < node->neighbours.size(); i++) {
gnode* tmp = node->neighbours[i];
int res = visit(tmp);
if (res == false) {
return false;
}
} node->col = BLACK; resVec.push_back(node->val); return true;
} vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) { vector<int> emptyV; // draw the graph representing the prerequisities relationship
map<int, gnode*> val_node;
for (int i = ; i < numCourses; i++) {
gnode* node = new gnode(i);
node->col = WHITE;
val_node[i] = node;
} for (int i = ; i < prerequisites.size(); i++) {
pair<int, int> pp = prerequisites[i];
val_node[pp.second]->neighbours.push_back(val_node[pp.first]);
} map<int, gnode*>::iterator m_iter;
for (m_iter = val_node.begin(); m_iter != val_node.end(); m_iter++) {
if (m_iter->second->col == WHITE) {
bool res = visit(m_iter->second);
if (res == false) {
return emptyV;
}
}
} // has a variable order
vector<int> resOdr(resVec.size());
for (int i = ; i < resVec.size(); i++) {
resOdr[i] = resVec[resVec.size() - i - ];
} return resOdr;
}

参考思路:

《算法导论》22.3 深度优先搜索, P349

《算法导论》22.4 拓扑排序, P355

[LeetCode] Course Schedule I (207) & II (210) 解题思路的更多相关文章

  1. [LeetCode] Subsets I (78) & II (90) 解题思路,即全组合算法

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a ...

  2. [LeetCode] Search in Rotated Sorted Array I (33) && II (81) 解题思路

    33. Search in Rotated Sorted Array Suppose a sorted array is rotated at some pivot unknown to you be ...

  3. leetCode 90.Subsets II(子集II) 解题思路和方法

    Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...

  4. leetCode 81.Search in Rotated Sorted Array II (旋转数组的搜索II) 解题思路和方法

    Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed? Would this ...

  5. leetCode 82.Remove Duplicates from Sorted List II (删除排序链表的反复II) 解题思路和方法

    Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numb ...

  6. [LeetCode] 160. Intersection of Two Linked Lists 解题思路

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  7. [LeetCode] 3. Longest Substring Without Repeating Characters 解题思路

    Given a string, find the length of the longest substring without repeating characters. For example, ...

  8. [LeetCode] 129. Sum Root to Leaf Numbers 解题思路

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  9. leetCode 34.Search for a Range (搜索范围) 解题思路和方法

    Search for a Range Given a sorted array of integers, find the starting and ending position of a give ...

随机推荐

  1. Zend Studio 10正式版破解(2013-02-26更新)

    Zend Studio 10正式版注册破解(2013-02-26完成更新) 1.以下方法仅供技术交流学习,请勿非法使用,如长期使用请支持购买正版. 2.若你还没有最新安装程序? ZendStudio ...

  2. Target runtime Apache Tomcat v6.0 is not defined. phyy Unknown Faceted Project Problem

    Description Resource Path Location TypeTarget runtime Apache Tomcat v6.0 is not defined. phyy Unknow ...

  3. Configuring Network Configuration-RHEL7

    1.查看网络状态systemctl status NetworkManager You can use the  systemctl status NetworkManager  command to ...

  4. 【网络流#7】POJ 3281 Dining 最大流 - 《挑战程序设计竞赛》例题

    不使用二分图匹配,使用最大流即可,设源点S与汇点T,S->食物->牛->牛->饮料->T,每条边流量为1,因为流过牛的最大流量是1,所以将牛拆成两个点. 前向星,Dini ...

  5. Tab标签栏 切换 权威总结

    angular的标签栏,有两种方法实现: 内容全部加载到页面中,再利用ng-show指令. 将每一块要加载的内容做成模板,利用ng-if指令加载. 用bootstrap的tab组件 用angular的 ...

  6. Spring 3.0就这么简单读书笔记

    一般情况下,spring容器中的大部分Bean都是单实例的,所以一般无须通过@Repository.@Service.@Component等注解的value属性为Bean指定名称,也无须使用@Qual ...

  7. RecycleView 滑动到底部,加载更多

    android.support.v7 包提供了一个新的组件:RecycleView,用以提供一个灵活的列表试图.显示大型数据集,它支持局部刷新.显示动画等功能,可以用来取代ListView与GridV ...

  8. CSS中的盒子模型详解

    很多人对盒子模型搞晕头了,下面通过一个简单的代码来分析盒子模型的结构! 为了方便方便观看!在第一个div中画了一个表格,并将其尺寸设置成与div内容大小一样!且设置body的margin和paddin ...

  9. PHP include 和 require

    PHP include 和 require 语句 在 PHP 中,您可以在服务器执行 PHP 文件之前在该文件中插入一个文件的内容. include 和 require 语句用于在执行流中插入写在其他 ...

  10. "float: left;" div 不换行显示

    <div id='p'> <div id='c1'> </div> <div id='c2'> </div> <div id='c3' ...