【POJ2976】Dropping tests - 01分数规划
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is
. However, if you drop the third test, your cumulative average becomes
.
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
题目大意
给出$n$个$a$和$b$,让选出$n-k$个使得$\frac{\sum a_i}{\sum b_i}$最大
思路
题目要求 $\frac{\sum a_i}{\sum b_i} \geq x$,$x$的最大值 ,也就是$\sum a_i - x \sum b_i \geq 0$ 二分完把$a_i-x b_i$排序取$n-k$个大的即可
/************************************************
*Author : lrj124
*Created Time : 2018.09.28.20:35
*Mail : 1584634848@qq.com
*Problem : poj2976
************************************************/
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 1000 + 10;
int n,k,a[maxn],b[maxn];
double tmp[maxn];
inline bool check(double x) {
for (int i = 1;i <= n;i++) tmp[i] = a[i]-x*b[i];
sort(tmp+1,tmp+n+1);
double ans = 0;
for (int i = k+1;i <= n;i++) ans += tmp[i];
return ans >= 0;
}
int main() {
while (cin >> n >> k) {
if (!n && !k) break;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) cin >> b[i];
double l = 0,r = 0x3f3f3f3f;
while (fabs(r-l) >= 1e-6) {
double mid = (l+r)/2;
if (check(mid)) l = mid;
else r = mid;
}
int ans = int(l*100+0.5);
printf("%d\n",ans);
}
return 0;
}
【POJ2976】Dropping tests - 01分数规划的更多相关文章
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- POJ2976 Dropping tests —— 01分数规划 二分法
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ2976 Dropping tests(01分数规划)
题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...
- POJ2976 Dropping tests 01分数规划
裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...
- Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8176 Accepted: 2862 De ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests 01分数规划
给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...
- $POJ$2976 $Dropping\ tests$ 01分数规划+贪心
正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...
- POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))
题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...
随机推荐
- pom.xml文件中的parent标签
基本概念 maven的核心就算pom.xm,使用maven是为了更好地帮项目管理包依赖.如果要引入一个jar包,需要在pom文件中加上 <dependency> <groupId&g ...
- 微信小程序-点餐系统
一.前言说明 博客声明:此文链接地址https://www.cnblogs.com/Vrapile/p/13353264.html,请尊重原创,未经允许禁止转载!!! 1. 主要功能 (1)后台定义分 ...
- 题解 洛谷 P4547 【[THUWC2017]随机二分图】
根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...
- xss原理绕过防御个人总结
xss原理 xss产生的原因是将恶意的html脚本代码插入web页面,底层原理和sql注入一样,都是因为js和php等都是解释性语言,会将输入的当做命令执行,所以可以注入恶意代码执行我们想要的内容 x ...
- 手写IOC容器
IOC(控制翻转)是程序设计的一种思想,其本质就是上端对象不能直接依赖于下端对象,要是依赖的话就要通过抽象来依赖.这是什么意思呢?意思就是上端对象如BLL层中,需要调用下端对象的DAL层时不能直接调用 ...
- CSS 技巧一则 -- 不定宽溢出文本适配滚动
在日常布局当中,肯定经常会遇到文本内容超过容器的情况.非常常见的一种解决方案是超出省略. 但是,有的时候,由于场景的限制,可能会出现在一些无法使用超出打点省略的方法的场景,譬如在导航栏中: 这种情况下 ...
- JavaScript高级程序设计(第三版) 7/25
第七章 函数表达式 1.定义函数的方式有两种,一种是函数声明,一种是函数表达式. //函数声明 function fuc (a){ } //函数表达式 var fuc = function(a){ } ...
- pandas_使用属性接口实现高级功能
C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx 这个文档自己创建就可以,以下几篇文章仅作为参考 import pandas as pd import copy ...
- GitOps初阶指南:将DevOps扩展至K8S
本文转自Rancher Labs 在过去十年的编程中,出现了一些革命性的转变.其中之一是源于围绕DevOps的实践,它将开发和运维团队整合到一个共享的工作流程中,此外还有持续集成和持续交付(CI/CD ...
- EC R 86 D Multiple Testcases 构造 贪心 二分
LINK:Multiple Testcases 得到很多种做法.其中O(n)的做法值得一提. 容易想到二分答案 check的时候发现不太清楚分配的策略. 需要先考虑如何分配 容易发现大的东西会对小的产 ...