Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

题目大意

给出$n$个$a$和$b$,让选出$n-k$个使得$\frac{\sum a_i}{\sum b_i}$最大

思路

题目要求 $\frac{\sum a_i}{\sum b_i} \geq x$,$x$的最大值 ,也就是$\sum a_i - x \sum b_i \geq 0$ 二分完把$a_i-x b_i$排序取$n-k$个大的即可

/************************************************
*Author : lrj124
*Created Time : 2018.09.28.20:35
*Mail : 1584634848@qq.com
*Problem : poj2976
************************************************/
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 1000 + 10;
int n,k,a[maxn],b[maxn];
double tmp[maxn];
inline bool check(double x) {
for (int i = 1;i <= n;i++) tmp[i] = a[i]-x*b[i];
sort(tmp+1,tmp+n+1);
double ans = 0;
for (int i = k+1;i <= n;i++) ans += tmp[i];
return ans >= 0;
}
int main() {
while (cin >> n >> k) {
if (!n && !k) break;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) cin >> b[i];
double l = 0,r = 0x3f3f3f3f;
while (fabs(r-l) >= 1e-6) {
double mid = (l+r)/2;
if (check(mid)) l = mid;
else r = mid;
}
int ans = int(l*100+0.5);
printf("%d\n",ans);
}
return 0;
}

【POJ2976】Dropping tests - 01分数规划的更多相关文章

  1. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  2. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  4. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  5. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests 01分数规划

    给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...

  8. $POJ$2976 $Dropping\ tests$ 01分数规划+贪心

    正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...

  9. POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))

    题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...

随机推荐

  1. 发布一个自己做的图片转Base64的软件,Markdown写文章时能用到

    markdownpic 介绍 Markdown编辑时图片生成base64 软件架构 使用了.netcore winform框架 安装教程 直接运行即可 使用说明 拖拽图片文件 双击选择文件 复制粘贴图 ...

  2. 手动触发浏览器resize

    今天做echarts图表 发现饼图不能居中,resize之后才会居中. 于是想手动触发resize方法,但是不改变浏览器窗口 JQ $(window).trigger('risize'); JS    ...

  3. 旧的成功的AndroidManifest.xml

    <?xml version="1.0" encoding="utf-8"?><manifest xmlns:android="htt ...

  4. Apache HTTP Server 虚拟主机配置

    Apache HTTP Server 虚拟主机配置(三)     什么是虚拟主机 "虚拟主机"是指在一个机器上运行多个网站(比如:www.company1.com  和 www.c ...

  5. Ansible部署zabbix-agent

    playbook目录 zabbix/ ├── hosts ##定义的主机列表 ├── install_zabbix_agent.yml ##安装入口文件 └── roles ├── install_z ...

  6. IO—》递归

    递归的概述 递归,指在当前方法内调用自己的这种现象 public void method(){ System.out.println(“递归的演示”); //在当前方法内调用自己 method(); ...

  7. python学习笔记1 -- 函数式编程之高阶函数 使用函数作为返回值

    使用函数作为返回值,看起来就很高端有木有,前面了解过函数名本身就是一个变量,就比如abs()函数,abs只是变量名,而abs()才是函数调用,那么我们如果把ads这个变量作为返回值返回会怎么样呢,这就 ...

  8. Day04_企业权限管理(SSM整合)

    学于黑马程序员和传智播客联合做的教学项目 感谢 黑马程序员官网 传智播客官网 个人根据教程的每天的工作进度的代码和资料 密码:cti5 b站在线视频 微信搜索"艺术行者",关注并回 ...

  9. 00_02_使用Parallels Desktop创建Windos7虚拟机

    准备工作 如果要看图片的准备过程请参考该链接 需要注意的是给CPU配置为一个核,内存分配1024M 硬盘空间划分为60G 操作系统安装设置 注:windows系统设置一般都是"下一步&quo ...

  10. 学习python的几个资料网站

    菜鸟教程 https://www.runoob.com/python3/python3-tutorial.html https://www.runoob.com/python/python-tutor ...