题意:

有\(n\)根长度不一的棍子,q次询问,求\([L,R]\)区间的棍子所能组成的周长最长的三角形。棍长\(\in [1, 1e9]\),n\(\in [1, 1e5]\)。

思路:

由于不构成三角形的数组为菲波那切数列,所以当棍数超过44时,长度超过1e9,所以从最大开始数最多不超过45次就能找到构成三角形。所以直接主席树查询区间第k大。复杂度\(O(45 * q * logn)\)。

代码:

#include<map>
#include<set>
#include<cmath>
#include<cstdio>
#include<stack>
#include<ctime>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
using namespace std;
int n, q, tot;
int root[maxn];
ll a[maxn];
vector<ll> vv;
int getId(ll x){
return lower_bound(vv.begin(), vv.end(),x) - vv.begin() + 1;
}
struct node{
int lson, rson;
int sum;
}T[maxn * 40];
void update(int l, int r, int &now, int pre, int v, int pos){
T[++tot] = T[pre], T[tot].sum += v, now = tot;
if(l == r) return;
int m = (l + r) >> 1;
if(m >= pos)
update(l, m, T[now].lson, T[pre].lson, v, pos);
else
update(m + 1, r, T[now].rson, T[pre].rson, v, pos);
}
int query(int l, int r, int pre, int now, int k){
if(l == r) return l;
int m = (l + r) >> 1;
int sum = T[T[now].lson].sum - T[T[pre].lson].sum;
if(sum >= k)
return query(l, m, T[pre].lson, T[now].lson, k);
else
return query(m + 1, r, T[pre].rson, T[now].rson, k - sum);
}
void init(){
memset(T, 0, sizeof(T));
tot = 0;
vv.clear();
}
int main(){
while(~scanf("%d%d", &n, &q)){
init();
for(int i = 1; i <= n; i++){
scanf("%lld", &a[i]), vv.push_back(a[i]);
}
sort(vv.begin(), vv.end());
vv.erase(unique(vv.begin(), vv.end()), vv.end()); for(int i = 1; i <= n; i++){
update(1, vv.size(), root[i], root[i - 1], 1, getId(a[i]));
}
while(q--){
int l, r;
scanf("%d%d", &l, &r);
int num = 0;
ll ans = -1;
ll a1, a2, a3;
for(int i = r - l + 1; i >= 1; i--){
if(num == 0){
a3 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else if(num == 1){
a2 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else if(num == 2){
a1 = query(1, vv.size(), root[l - 1], root[r], i);
num++;
}
else{
a3 = a2, a2 = a1;
a1 = query(1, vv.size(), root[l - 1], root[r], i);
}
if(num == 3 && vv[a1 - 1] + vv[a2 - 1] > vv[a3 - 1]){
ans = vv[a1 - 1] + vv[a2 - 1] + vv[a3 - 1];
break;
}
}
printf("%lld\n", ans);
}
}
return 0;
}

杭电多校HDU 6601 Keen On Everything But Triangle(主席树)题解的更多相关文章

  1. HDU - 6601 Keen On Everything But Triangle 主席树

    Keen On Everything But Triangle 感觉最近多校好多主席树的亚子,但是本人菜得很,还没学过主席树,看着队友写题就只能划水,\(WA\)了还不能帮忙\(debug\),所以深 ...

  2. 杭电多校HDU 6579 Operation (线性基 区间最大)题解

    题意: 强制在线,求\(LR\)区间最大子集异或和 思路: 求线性基的时候,记录一个\(pos[i]\)表示某个\(d[i]\)是在某个位置更新进入的.如果插入时\(d[i]\)的\(pos[i]\) ...

  3. 杭电多校HDU 6656 Kejin Player(概率DP)题解

    题意: 最低等级\(level\ 1\),已知在\(level\ i\)操作一次需花费\(a_i\),有概率\(p_i\)升级到\(level\ i+1\),有\(1 - p_i\)掉级到\(x_i( ...

  4. 杭电多校HDU 6599 I Love Palindrome String (回文树)题解

    题意: 定义一个串为\(super\)回文串为: \(\bullet\) 串s为主串str的一个子串,即\(s = str_lstr_{l + 1} \cdots str_r\) \(\bullet\ ...

  5. 杭电多校HDU 6586 String(预处理 + 贪心)题解

    题意: 给你一个串,现需要你给出一个子序列,满足26个约束条件,\(len(A_i) >= L_i\) 且 \(len(A_i) <= R_i\), \(A_i\)为从a到z的26个字母. ...

  6. [2019杭电多校第三场][hdu6609]Find the answer(线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6609 大致题意是求出每个位置i最小需要将几个位置j变为0(j<i),使得$\sum_{j=1}^ ...

  7. [2019杭电多校第三场][hdu6606]Distribution of books(线段树&&dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6606 题意为在n个数中选m(自选)个数,然后把m个数分成k块,使得每块数字之和最大的最小. 求数字和最 ...

  8. 2019年杭电多校第二场 1012题Longest Subarray(HDU6602+线段树)

    题目链接 传送门 题意 要你找一个最长的区间使得区间内每一个数出现次数都大于等于\(K\). 思路 我们通过固定右端点考虑每个左端点的情况. 首先对于每个位置,我们用线段树来维护它作为\(C\)种元素 ...

  9. 2019杭电多校第三场hdu6609 Find the answer(线段树)

    Find the answer 题目传送门 解题思路 要想变0的个数最少,显然是优先把大的变成0.所以离散化,建立一颗权值线段树,维护区间和与区间元素数量,假设至少减去k才能满足条件,查询大于等于k的 ...

随机推荐

  1. RocketMq消息 demo

    参考 https://blog.csdn.net/asdf08442a/article/details/54882769 整理出来的测试 demo 1.produce 生产者 1 package co ...

  2. 一个简单的IM聊天程序Pie IM(以后会更新)

    这个程序用多线程,实现设备之间的聊天,支持win10通知,欢迎下载 依赖的第三方库 win10toast 代码 将以下代码写入任意.py文件 1 print('Welcome to use Pie I ...

  3. 【Android初级】使用Gallery实现照片拖动的特效(附源码)

    今天要分享一个非常简单的功能: 使用Android原生控件Gallery实现照片拖动的特效 实现思路如下: 在布局文件中定义一个Gallery控件 由于要显示多张图,为了方便,我直接引用了Androi ...

  4. TekRADIUS5.5安装教程

    1.下载地址:https://www.kaplansoft.com/TekRADIUS/release/tekradius.zip 2.解压安装,双击一步默认安装下来就是了 3.配置连接数据库: 4. ...

  5. Python+Selenium+Unittest实现PO模式web自动化框架(1)

    1.什么是PO模式? PO是Page Object的缩写 PO模式是自动化测试项目开发实践的最佳设计模式之一,讲页面定位和业务操作分开,也就是把对象的定位和测试脚本分开,从而提供可维护性. 主要有以下 ...

  6. 宝塔Linux命令

    安装宝塔 Centos安装脚本 5.7:yum install -y wget && wget -O install.sh http://download.bt.cn/install/ ...

  7. hadoop及NameNode和SecondaryNameNode工作机制

    hadoop及NameNode和SecondaryNameNode工作机制 1.hadoop组成 Common MapReduce Yarn HDFS (1)HDFS namenode:存放目录,最重 ...

  8. GDB 简单学习

    一般来说,GDB主要帮忙你完成下面四个方面的功能:       1.启动你的程序,可以按照你的自定义的要求随心所欲的运行程序.     2.可让被调试的程序在你所指定的调置的断点处停住.(断点可以是条 ...

  9. Centos虚拟机上安装部署Tenginx,以及部署过程中遇到的问题

    Tenginx下载网址: Tenginx 官网地址:http://tengine.taobao.org/ Tenginx的官方网址中可以阅读Nginx的文档,可以选择中文进行阅读.下载Tengine- ...

  10. sudo 配置

    在ubuntu中由于禁用了root用户,默认情况下会把安装系统时建立的用户添加到sudoers中. 但在redhat和centos中并没有把任何root用户之外的用户默认的添加到sudoers之中.这 ...