面试题 & 真实经历

面试题:在数据量很大的情况下,怎么实现深度分页?

大家在面试时,或者准备面试中可能会遇到上述的问题,大多的回答基本上是分库分表建索引,这是一种很标准的正确回答,但现实总是很骨感,所以面试官一般会追问你一句,现在工期不足,人员不足,该怎么实现深度分页?

这个时候没有实际经验的同学基本麻爪,So,请听我娓娓道来。

惨痛的教训

首先必须明确一点:深度分页可以做,但是深度随机跳页绝对需要禁止。

上一张图:

你们猜,我点一下第142360页,服务会不会爆炸?

MySQLMongoDB数据库还好,本身就是专业的数据库,处理的不好,最多就是慢,但如果涉及到ES,性质就不一样了,我们不得不利用 SearchAfter Api,去循环获取数据,这就牵扯到内存占用的问题,如果当时代码写的不优雅,直接就可能导致内存溢出。

为什么不能允许随机深度跳页

从技术的角度浅显的聊一聊为什么不能允许随机深度跳页,或者说为什么不建议深度分页

MySQL

分页的基本原理:

SELECT * FROM test ORDER BY id DESC LIMIT 10000, 20;

LIMIT 10000 , 20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行。如果是LIMIT 1000000 , 100,需要扫描1000100 行,在一个高并发的应用里,每次查询需要扫描超过100W行,不炸才怪。

MongoDB

分页的基本原理:

db.t_data.find().limit(5).skip(5);

同样的,随着页码的增大,skip 跳过的条目也会随之变大,而这个操作是通过 cursor 的迭代器来实现的,对于cpu的消耗会非常明显,当页码非常大时且频繁时,必然爆炸。

ElasticSearch

从业务的角度来说,ElasticSearch不是典型的数据库,它是一个搜索引擎,如果在筛选条件下没有搜索出想要的数据,继续深度分页也不会找到想要的数据,退一步讲,假如我们把ES作为数据库来使用进行查询,在进行分页的时候一定会遇到max_result_window 的限制,看到没,官方都告诉你最大偏移量限制是一万。

查询流程:

  1. 如查询第501页,每页10条,客户端发送请求到某节点
  2. 此节点将数据广播到各个分片,各分片各自查询前 5010 条数据
  3. 查询结果返回至该节点,然后对数据进行整合,取出前 5010 条数据
  4. 返回给客户端

由此可以看出为什么要限制偏移量,另外,如果使用 Search After 这种滚动式API进行深度跳页查询,也是一样需要每次滚动几千条,可能一共需要滚动上百万,千万条数据,就为了最后的20条数据,效率可想而知。

再次和产品对线

俗话说的好,技术解决不了的问题,就由业务来解决!

在实习的时候信了产品的邪,必须实现深度分页 + 跳页,如今必须拨乱反正,业务上必须有如下更改:

  • 尽可能的增加默认的筛选条件,如:时间周期,目的是为了减少数据量的展示
  • 修改跳页的展现方式,改为滚动显示,或小范围跳页

滚动显示参考图:

小规模跳页参考图:

通用解决方案

短时间内快速解决的方案主要是以下几点:

  • 必备:对排序字段,筛选条件务必设置好索引
  • 核心:利用小范围页码的已知数据,或者滚动加载的已知数据,减少偏移量
  • 额外:如果遇到不好处理的情况,也可以获取多余的数据,进行一定的截取,性能影响并不大

MySQL

原分页SQL:

# 第一页
SELECT * FROM `year_score` where `year` = 2017 ORDER BY id limit 0, 20; # 第N页
SELECT * FROM `year_score` where `year` = 2017 ORDER BY id limit (N - 1) * 20, 20;

通过上下文关系,改写为:

# XXXX 代表已知的数据
SELECT * FROM `year_score` where `year` = 2017 and id > XXXX ORDER BY id limit 20;

没内鬼,来点干货!SQL优化和诊断 一文中提到过,LIMIT会在满足条件下停止查询,因此该方案的扫描总量会急剧减少,效率提升Max!

ES

方案和MySQL相同,此时我们就可以随用所欲的使用 FROM-TO Api,而且不用考虑最大限制的问题。

MongoDB

方案基本类似,基本代码如下:

相关性能测试:

如果非要深度随机跳页

如果你没有杠过产品经理,又该怎么办呢,没关系,还有一丝丝的机会。

SQL优化 一文中还提到过MySQL深度分页的处理技巧,代码如下:

# 反例(耗时129.570s)
select * from task_result LIMIT 20000000, 10; # 正例(耗时5.114s)
SELECT a.* FROM task_result a, (select id from task_result LIMIT 20000000, 10) b where a.id = b.id; # 说明
# task_result表为生产环境的一个表,总数据量为3400万,id为主键,偏移量达到2000万

该方案的核心逻辑即基于聚簇索引,在不通过回表的情况下,快速拿到指定偏移量数据的主键ID,然后利用聚簇索引进行回表查询,此时总量仅为10条,效率很高。

因此我们在处理MySQLESMongoDB时,也可以采用一样的办法:

  1. 限制获取的字段,只通过筛选条件,深度分页获取主键ID
  2. 通过主键ID定向查询需要的数据

瑕疵:当偏移量非常大时,耗时较长,如文中的 5s

最后

参考文章:MongoDB中文社区

感谢 @程大设计师 为我倾情设计的二维码

如果觉得对你有用的话,不要忘记点个赞啊~

上亿数据怎么玩深度分页?兼容MySQL + ES + MongoDB的更多相关文章

  1. 大数据学习[16]--使用scroll实现Elasticsearch数据遍历和深度分页[转]

    题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll% ...

  2. 上千万或上亿数据(有反复),统计当中出现次数最多的N个数据. C++实现

    上千万或上亿的数据,如今的机器的内存应该能存下.所以考虑採用hash_map/搜索二叉树/红黑树等来进行统计次数. 然后就是取出前N个出现次数最多的数据了,能够用第2题提到的堆机制完毕. #inclu ...

  3. R语言操作mysql上亿数据量(ff包ffbase包和ETLUtils包)

    平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLU ...

  4. 30G 上亿数据的超大文件,如何快速导入生产环境?

    Hello,大家好,我是楼下小黑哥~ 如果给你一个包含一亿行数据的超大文件,让你在一周之内将数据转化导入生产数据库,你会如何操作? 上面的问题其实是小黑哥前段时间接到一个真实的业务需求,将一个老系统历 ...

  5. 搭建企业级实时数据融合平台难吗?Tapdata + ES + MongoDB 就能搞定

      摘要:如何打造一套企业级的实时数据融合平台?Tapdata 已经找到了最佳实践,下文将以 Tapdata 的零售行业客户为例,与您分享:基于 ES 和 MongoDB 来快速构建一套企业级的实时数 ...

  6. 网易java高级开发课程 面对上亿数据量,网易用啥技术?

  7. mysql千万级测试1亿数据的分页分析测试

    本文为本人最近利用几个小时才分析总结出的原创文章,希望大家转载,但是要注明出处 http://blog.sina.com.cn/s/blog_438308750100im0e.html 有什么问题可以 ...

  8. [翻译] C# 8.0 新特性 Redis基本使用及百亿数据量中的使用技巧分享(附视频地址及观看指南) 【由浅至深】redis 实现发布订阅的几种方式 .NET Core开发者的福音之玩转Redis的又一傻瓜式神器推荐

    [翻译] C# 8.0 新特性 2018-11-13 17:04 by Rwing, 1179 阅读, 24 评论, 收藏, 编辑 原文: Building C# 8.0[译注:原文主标题如此,但内容 ...

  9. 生产环境zabbix3.2上亿的表数据通过表分区的方式进行历史数据清理

    生产环境zabbix3.2上亿的表数据通过表分区的方式进行历史数据清理 zabbix服务器经常报警io过载,在报警的时候发现是数据库在删除历史数据时耗时较长 数据库积攒了大量的历史数据信息,主要集中在 ...

随机推荐

  1. 0.1---selenium+java自动化测试进阶01---PageObject设计模式

    一.PageObject设计模式   1.简介 PageObject设计模式,又称页面对象模式,是使用Selenium的广大同行最为公认的一种设计模式.在设计测试时,把元素和方法按照页面抽象出来,分离 ...

  2. rust 函数-生命周期

    记录一下自己理解的生命周期. 每个变量都有自己的生命周期. 在c++里生命周期好比作用域, 小的作用域的可以使用大作用域的变量. 如果把这里的每个作用域取个名,那么就相当于rust里的生命周期注解. ...

  3. 原来你是这样的BERT,i了i了! —— 超详细BERT介绍(一)BERT主模型的结构及其组件

    原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Tran ...

  4. javaScript深入浅出之理解闭包

    javaScript深入浅出之理解闭包 引言 闭包是个老生长谈的话题了,对于闭包网上也有很多不同的看法 <你不知道的javaScript>对于闭包是这么定义的:函数创建和函数执行不在同一个 ...

  5. .NET Core请求控制器Action方法正确匹配,但为何404?

    前言 有些时候我们会发现方法名称都正确匹配,但就是找不到对应请求接口,所以本文我们来深入了解下何时会出现接口请求404的情况. 匹配控制器Action方法(404) 首先我们创建一个web api应用 ...

  6. NFC芯片选型及基本电路框架

    RFID作为一项专业度较高的技术,在一些公司,可能还会专门招聘专业的RFID工程师.本篇阐述的涉及到的只是基本选型设计.电路框架,关于RFID天线调试.低功耗检卡调试等,后续再其他篇章会继续更新! N ...

  7. CentOS 7 下安装 MySQL 8.0

    前言 本篇文章主要介绍在 CentOS 7 环境下安装 MySQL 8.0. 正文 1. 配置yum源 首先在 https://dev.mysql.com/downloads/repo/yum/ 找到 ...

  8. .NET高级调试系列-Windbg调试入门篇

    Windbg是.NET高级调试领域中不可或缺的一个工具和利器,也是日常我们分析解决问题的必备.准备近期写2篇精华文章,集中给大家分享一下如果通过Windbg进行.NET高级调试. 今天我们来一篇入门的 ...

  9. Digix2019华为算法精英挑战赛代码

    Digix2019华为算法精英挑战赛代码 最终成绩: 决赛第九 问题 根据手机型号,颜色,用户偏好,手机APP等信息预测用户年龄. https://developer.huawei.com/consu ...

  10. Python实用笔记 (26)面向对象高级编程——定制类

    Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类.以下是集中常见的定制方法: 怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了: _ ...