一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了

1、前置技能

1.链式前向星(vector 建图)

2.dfs 建树

3.剖分轻重链,轻重儿子

重儿子 一个结点的所有儿子中拥有最多子树的儿子
轻儿子 一个结点的所有儿子中不是重儿子的儿子
重边 父亲与重儿子的连边
轻边 父亲与轻儿子的连边
重链 一堆重边连接而成的链
轻链 一堆轻边连接而成的链

2、什么是 dsu on tree(树上启发式合并) ?

dsu on tree 其实就是个优雅的暴力算法,和它一起共被称为优雅暴力的算法还有莫队

所谓优雅的暴力大概是指:“优雅思想,暴力的操作”

例如莫队我们知道它是将整个区间分块,再将询问的区间排序,最后暴力的维护所有询问的区间

其中 "整个区间分块,询问的区间排序" 为优雅的思想,而 "暴力的维护所有询问的区间" 为暴力的操作

因为需要将询问的区间排序,我们就需要先将询问的区间保存下来,也就是要离线

dsu on tree 和莫队类似,也需要离线(它们同属于静态算法)

dsu on tree 优雅的思想:

对于以 u 为根的子树

①. 先统计它轻子树(轻儿子为根的子树)的答案,统计完后删除信息

②. 再统计它重子树(重儿子为根的子树)的答案 ,统计完后保留信息

③. 然后再将重子树的信息合并到 u上

④. 再去遍历 u 的轻子树,然后把轻子树的信息合并到 u 上

⑤. 判断 u 的信息是否需要传递给它的父节点(u 是否是它父节点的重儿子)

dsu on tree 暴力的操作

dsu on tree 暴力的操作体现于统计答案上(不同的题目统计方式不一样)

3、dsu on tree 的过程演示及代码

1.图示

  • 1 的重儿子为 2,轻儿子为 3

  • 2 的重儿子为 4,轻儿子为 5

  • 3 没有重儿子,没有轻儿子

  • 4 的重儿子为 6,没有轻儿子

  • 5 的重儿子为 7,没有轻儿子

  • 6 没有重儿子,没有轻儿子

  • 7 没有重儿子,没有轻儿子

为了更好观看,我们将节点与其重儿子的连线描红

我们从根节点1进入,先找1的轻儿子,发现3,进入3

3没有别的儿子可以进入了,于是统计3的信息

统计完后即将返回父节点 1

因为1-3的边没有被描红边、3不是1的重儿子(不传递3的信息),所以删除3的信息再返回 1

发现1没有别的轻儿子了,就找重儿子,发现2,进入2

进入2后,再找2的轻儿子,发现5,进入5

发现5没有轻儿子了,就找重儿子,发现7,进入 7

7 没有别的儿子可以进入了,于是统计 7 的信息

统计完后即将返回父节点 5

因为边5-7 有被描红边、7是5的重儿子,所以保留7的信息直接返回 5(传递7的信息的给5)

5 所有儿子都进入过了,于是统计 5 的信息

统计完后即将范围父节点 2

因为边2-5 没有被描红边、5不是2的重儿子,所以删除5的信息再返回 2

发现2没有其它轻儿子了,就找重儿子,发现4,进入4

发现4没有其它轻儿子了,就找重儿子,发现6,进入6

6 没有别的儿子可以进入了,于是统计 6 的信息

统计完后即将返回父节点 4

因为边4-6 有被描红边,6是4的重儿子,所以保留6的信息直接返回 4(传递6的信息的给4)

4 所有儿子都进入过了,于是统计 4 的信息

统计完后即将返回父节点 2

因为边2-4 有被描红边,4是2的重儿子,所以保留4的信息直接返回2(传递4的信息的给2)

2 所有儿子都进入过了,于是统计 2 的信息

2 接受了4传递的信息,但是并没有接受5传递给它的信息(被删除了)

于是 2 再进入5(轻儿子),统计一遍以 5 为根的子树的信息,再将该信息合并到 2上

统计完后 2 后即将返回父节点 1

因为边1-2 有被描红边,2是1的重儿子,所以保留2的信息直接返回1(传递2的信息的给1)

1 所有儿子都进入过了,于是统计 1 的信息

1 接受了2传递的信息,但是并没有接受3传递给它的信息(被删除了)

于是 1 再进入3(轻儿子),统计一遍以 3 为根的子树的信息,再将该信息合并到 1 上

至此,整个 dsu on tree 的过程结束

2.代码

struct Edge{
int nex , to;
}edge[N << 1];
int head[N] , TOT;
void add_edge(int u , int v) // 链式前向星建图
{
edge[++ TOT].nex = head[u] ;
edge[TOT].to = v;
head[u] = TOT;
}
int sz[N]; // sz[u] 表示以 u 为根的子树大小
int hson[N]; // hson[u] 表示 u 的重儿子
int HH; // HH 表示当前根节点的重儿子
void dfs(int u , int far)
{
sz[u] = 1;
for(int i = head[u] ; i ; i = edge[i].nex) // 链式前向星
{
int v = edge[i].to;
if(v == far) continue ;
dfs(v , u);
sz[u] += sz[v];
if(sz[v] > sz[hson[u]]) hson[u] = v; // 选择 u 的重儿子
}
}
void calc(int u , int far , int val) // 统计答案
{
if(val == 1) ...; // val = 1,则添加信息
else ...; // val = -1,则删除信息
......
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == HH) continue ; // 如果 v 是当前根节点的重儿子,则跳过
calc(v , u , val);
}
}
void dsu(int u , int far , int op) // op 等于0表示不保留信息,等于1表示保留信息
{
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == hson[u]) continue ; // 如果 v 是重儿子或者父亲节点就跳过
dsu(v , u , 0); // 先遍历轻儿子 ,op = 0 :轻儿子的答案不做保留
}
if(hson[u]) dsu(hson[u] , u , 1) , HH = hson[u];
// 轻儿子都遍历完了,如果存在重儿子,遍历重儿子(事实上除了叶子节点每个点都必然有重儿子)
// op = 1 , 保留重儿子的信息
// 当前是以 u 为根节点的子树,所以根节点的重儿子 HH = hson[u]
calc(u , far , 1); // 再次遍历轻儿子统计答案
HH = 0; // 遍历结束 ,即将返回父节点,所以取消标记 HH
if(!op) calc(u , far , -1); // 如果 op = -1,则 u 对于它的父亲来说是轻儿子,不需要将信息传递给它的父亲
}

4.经典例题讲解

题目编号 题目链接 题解链接
CF600E https://codeforces.com/problemset/problem/600/E https://www.cnblogs.com/StarRoadTang/p/14028212.html
CF570D https://codeforces.com/problemset/problem/570/D https://www.cnblogs.com/StarRoadTang/p/14028239.html
CF208E https://codeforces.com/problemset/problem/208/E https://www.cnblogs.com/StarRoadTang/p/14028265.html
CF246E https://codeforces.com/problemset/problem/246/E https://www.cnblogs.com/StarRoadTang/p/14028271.html
CF1009F https://codeforces.com/problemset/problem/1009/F https://www.cnblogs.com/StarRoadTang/p/14028284.html
CF375D https://codeforces.com/problemset/problem/375/D https://www.cnblogs.com/StarRoadTang/p/14028290.html
wannafly Day2 E https://ac.nowcoder.com/acm/contest/4010/E?&headNav=acm https://www.cnblogs.com/StarRoadTang/p/14028296.html
ccpc2020长春站F题 https://codeforces.com/gym/102832/problem/F https://www.cnblogs.com/StarRoadTang/p/14028298.html
洛谷P4149 https://www.luogu.com.cn/problem/P4149 https://www.cnblogs.com/StarRoadTang/p/14028300.html

5.难题进阶

这是道较难的题,听说这也是 dsu on tree 的发明人专门为这个算法出的题

题目编号 题目链接 题解链接
CF741D https://codeforces.com/contest/741/problem/D https://www.cnblogs.com/StarRoadTang/p/14028301.html
    ┏┛ ┻━━━━━┛ ┻┓
┃      ┃
┃   ━    ┃
┃ ┳┛  ┗┳  ┃
┃       ┃
┃   ┻    ┃
┃       ┃
┗━┓   ┏━━━┛
┃   ┃ 神兽保佑
┃   ┃ 代码无BUG!
┃   ┗━━━━━━━━━┓
┃        ┣┓
┃     ┏┛
┗━┓ ┓ ┏━━━┳ ┓ ┏━┛
┃ ┫ ┫ ┃ ┫ ┫
┗━┻━┛ ┗━┻━┛

dsu on tree (树上启发式合并) 详解的更多相关文章

  1. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  2. dsu on tree[树上启发式合并学习笔记]

    dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...

  3. dsu on tree(树上启发式合并)

    简介 对于一颗静态树,O(nlogn)时间内处理子树的统计问题.是一种优雅的暴力. 算法思想 很显然,朴素做法下,对于每颗子树对其进行统计的时间复杂度是平方级别的.考虑对树进行一个重链剖分.虽然都基于 ...

  4. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  5. 【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)

    (这题在洛谷主站居然搜不到--还是在百度上偶然看到的) 题目描述 给一棵根为1的树,每次询问子树颜色种类数 输入输出格式 输入格式: 第一行一个整数n,表示树的结点数 接下来n-1行,每行一条边 接下 ...

  6. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  7. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 树上启发式合并(DSU ON TREE)

    题目描述 一棵根为\(1\) 的树,每条边上有一个字符(\(a-v\)共\(22\)种). 一条简单路径被称为\(Dokhtar-kosh\)当且仅当路径上的字符经过重新排序后可以变成一个回文串. 求 ...

  8. 树上启发式合并(dsu on tree)

    树上启发式合并属于暴力的优化,复杂度O(nlogn) 主要解决的问题特点在于: 1.对于树上的某些信息进行查询 2.一般问题的解决不包含对树的修改,所有答案可以离线解决 算法思路:这类问题的特点在于父 ...

  9. 【CF375D】Trees and Queries——树上启发式合并

    (题面不是来自Luogu) 题目描述 有一个大小为n且以1为根的树,树上每个点都有对应的颜色ci.现给出m次询问v, k,问以v为根的子树中有多少种颜色至少出现了k次. 输入格式 第一行两个数n,m表 ...

随机推荐

  1. 企业级RPC框架zRPC

    近期比较火的开源项目go-zero是一个集成了各种工程实践的包含了Web和RPC协议的功能完善的微服务框架,今天我们就一起来分析一下其中的RPC部分zRPC. zRPC底层依赖gRPC,内置了服务注册 ...

  2. 天猫精灵对接2(OAuth 搭建)

    根据 接入方式及流程 中的说明,可知,搭建过程中,我们需要自己整一个 OAuth 的授权平台,具体说明可以参考蟋蟀大哥的文章  ASP.NET WebApi OWIN 实现 OAuth 2.0 ,我的 ...

  3. 第二个 SignalR,可以私聊的聊天室

    一.简介 上一次,我们写了个简单的聊天室,接下来,我们来整一个可以私聊的聊天室. SignalR 官方 API 文档 需求简单分析: 1.私聊功能,那么要记录用户名或用户ID,用于发送消息. 2.怎么 ...

  4. docker 启动mysql 挂载宿主机目录

    在使用docker run 运行镜像获取容器时,有些容器会自动产生一些数据,为了这些数据会因为container (容器)的消失而消失,保证数据的安全,比如mysql 容器在运行中产生的一些表的数据, ...

  5. Vue 学习第二部

    目录 通过axios实现数据请求 json json数据的语法 js中是提供的接送数据转换方法 ajax 数据接口 ajax的使用 同源策略 ajax跨域(跨源)方案之cors 组件化开发 组件[co ...

  6. Stream(四)

    public class Test { /* * 创建:一步 * 中间:0~n步 * 终结:一步 * * 三.终结操作 * 1.void forEach(Consumer ):遍历流中的数据 * 2. ...

  7. A*算法的有关知识--例子:最短路径问题

    前置知识 定义1,g(n)=从树根到节点n的代价.当算法处理到某个节点时,g(n)是可以精确计算的. 定义2,h*(n)=从节点n到目标节点的优化路径的代价.一般不可知. 定义3,f*(n)=g(n) ...

  8. 【算法】HashMap相关要点记录

    在刷leetcode的算法题时,HashMap需要大量使用,而且也是面试的高频问题.这里记录了HashMap一些增.删.改.查的实现细节和时间复杂度,罗列了一些比较有用的方法,以及其它的一些细节. 1 ...

  9. 容器之间通讯方式\与pod关系

    1.概述 k8s里面容器是存在于pod里面的,所以容器之间通讯,一般分为三种类型:1. pod内部容器之间 2. pod 与 pod 容器之间 3. pod 访问service服务 (1) pod内部 ...

  10. python获取当前时间、今天零点、235959点、昨天当前时间、明天的当前时间

    python获取当前时间.今天零点.23:59:59点.昨天当前时间.明天的当前时间. 关注公众号"轻松学编程"了解更多. 获取当前时间.今天零点 使用timedalte. tim ...