题目

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

输入格式

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

One line with two integers N and M, separated by a single space, with \(2 ≤ N ≤ 1,000\) and \(1 ≤ M ≤ 10, 000\): the number of cities and the number of roads in the road map.

M lines, each with three integers A, B and L, separated by single spaces, with \(1 ≤ A, B ≤ N, A ≠ B\) and \(1 ≤ L ≤ 1,000\), describing a road from city \(A\) to city \(B\) with length \(L\).

The roads are unidirectional. Hence, if there is a road from \(A\) to \(B\), then there is not necessarily also a road from \(B\) to \(A\). There may be different roads from a city A to a city B.

One line with two integers \(S\) and \(F\), separated by a single space, with \(1 ≤ S, F ≤ N\) and \(S ≠ F\): the starting city and the final city of the route.

There will be at least one route from \(S\) to \(F\).

输出格式

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

输入样例

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

输出样例

3
2

代码

实际上就是最短路, 但是增加了一个次长路, 也很好解决

在Dijkstra更新时, 每次构建一个新路径, 做一下判断, 不仅更新最短路, 还要更新次短路

记录源点到某点的最短路和次短路

  1. 如果新路径小于最短路, 那么新路径变成最短路, 原来的最短路变成次短路;

  2. 如果新路径等于最短路, 那么最短路方法数+1

  3. 如果新路径大于最短路小于次短路, 更新次短路

  4. 如果新路径等于次短路, 那么次短路方法数+1

代码

#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f, VM = 1010, EM = 10010;
struct Edge { int to, next, w; } edges[EM << 1];
int dis[VM][2], head[VM], num[VM][2], n, m, cnt;
bool vis[VM][2];
void add(int u, int v, int w) { edges[++cnt] = (Edge){v, head[u], w}, head[u] = cnt; }
void Dijkstra(int s, int e) {
memset(vis, false, sizeof(vis));
memset(num, 0, sizeof(num));
for (int i = 1; i <= n; i++) dis[i][0] = INF, dis[i][1] = INF;
dis[s][0] = 0, num[s][0] = 1;
int p, flag;
for (int i = 1; i <= 2 * n - 1; i++) {
int minn = INF;
for (int j = 1; j <= n; j++) {
if (!vis[j][0] && minn > dis[j][0]) {
flag = 0;
minn = dis[p = j][0];
} else if (!vis[j][1] && minn > dis[j][1]) {
flag = 1;
minn = dis[p = j][1];
}
}
if (minn == INF) break;
vis[p][flag] = true;
for (int j = head[p]; j; j = edges[j].next) {
int v = edges[j].to;
if (dis[v][0] > minn + edges[j].w) {
dis[v][1] = dis[v][0];
num[v][1] = num[v][0];
dis[v][0] = minn + edges[j].w;
num[v][0] = num[p][flag];
} else if (dis[v][0] == minn + edges[j].w)
num[v][0] += num[p][flag];
else if (dis[v][1] > minn + edges[j].w) {
dis[v][1] = minn + edges[j].w;
num[v][1] = num[p][flag];
} else if (dis[v][1] == minn + edges[j].w)
num[v][1] += num[p][flag];
}
}
if (dis[e][1] == dis[e][0] + 1) num[e][0] += num[e][1];
printf("%d\n", num[e][0]);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
cnt = 0;
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
int u, v, w;
while (m--) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
int s, e;
scanf("%d%d", &s, &e);
Dijkstra(s, e);
}
return 0;
}

POJ 3463 Sightseeing 题解的更多相关文章

  1. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  2. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  3. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  4. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  5. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  6. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  7. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  8. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  9. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

随机推荐

  1. 本地存储 localStorage

    本地存储localStorage 概念:window对象下面的属性,html5新增的,将5M大小的数据存储本地的浏览器上面. 浏览器支持存储5M大小 本地存储localStorage特点 本地存储属于 ...

  2. 第03组团队Git现场编程实战

    1.组员职责分工 张逸杰:复制监督整个编程任务的进程以及协助组员编程 黄智锋.刘汪洋:负责UI设计 苏凯婷.鲍冰如:爬取数据并负责测评出福州最受欢迎的商圈 陈荣杰.杨锦镔:爬取数据并负责测评出福州人均 ...

  3. Windows内核驱动开发:HelloWorld

    测试信息 Dev Machine: Windows Version: 2004 (19041.264) WDK Version: 10.0.19041.1 SDK Version: 10.0.1904 ...

  4. 温故知新-多线程-Cache Line存在验证

    文章目录 简述 缓存行Cache Line 验证CacehLine存在? 参考 你的鼓励也是我创作的动力 Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持 ...

  5. HDU - 3591 The trouble of Xiaoqian 题解

    题目大意 有 \(N\) 种不同面值的硬币,分别给出每种硬币的面值 \(v_i\) 和数量 \(c_i\).同时,售货员每种硬币数量都是无限的,用来找零. 要买价格为 \(T\) 的商品,求在交易中最 ...

  6. 【Spring注解驱动开发】使用@Import注解给容器中快速导入一个组件

    写在前面 我们可以将一些bean组件交由Spring管理,并且Spring支持单实例bean和多实例bean.我们自己写的类,可以通过包扫描+标注注解(@Controller.@Servcie.@Re ...

  7. windows tcp server select

    #include <stdio.h> #include <tchar.h> #include <winsock2.h> #include <iostream& ...

  8. 并行处理框架Celery的Web监控管理服务-Flower

    安装和使用 使用pip安装Flower: $ pip install flower或 pip install flower -U -i https://pypi.tuna.tsinghua.edu.c ...

  9. Modern C++

    microsoft: Modern C++ 目录 1. auto 关键字 2. 智能指针(smart pointers) 3. std::string & std::string_view 4 ...

  10. mitmproxy的简单使用

    第1则 ---抓包工具mitmdump的使用--- 一.什么是抓包?怎么抓包? 1.抓包(packet capture)就是将网络传输发送与接收的数据包进行截获.重发.编辑.转存等操作,也用来检查网络 ...