POJ 3463 Sightseeing 题解
题目
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.
For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
输入格式
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with \(2 ≤ N ≤ 1,000\) and \(1 ≤ M ≤ 10, 000\): the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with \(1 ≤ A, B ≤ N, A ≠ B\) and \(1 ≤ L ≤ 1,000\), describing a road from city \(A\) to city \(B\) with length \(L\).
The roads are unidirectional. Hence, if there is a road from \(A\) to \(B\), then there is not necessarily also a road from \(B\) to \(A\). There may be different roads from a city A to a city B.
One line with two integers \(S\) and \(F\), separated by a single space, with \(1 ≤ S, F ≤ N\) and \(S ≠ F\): the starting city and the final city of the route.
There will be at least one route from \(S\) to \(F\).
输出格式
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
输入样例
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
输出样例
3
2
代码
实际上就是最短路, 但是增加了一个次长路, 也很好解决
在Dijkstra更新时, 每次构建一个新路径, 做一下判断, 不仅更新最短路, 还要更新次短路
记录源点到某点的最短路和次短路
如果新路径小于最短路, 那么新路径变成最短路, 原来的最短路变成次短路;
如果新路径等于最短路, 那么最短路方法数+1
如果新路径大于最短路小于次短路, 更新次短路
如果新路径等于次短路, 那么次短路方法数+1
代码
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f, VM = 1010, EM = 10010;
struct Edge { int to, next, w; } edges[EM << 1];
int dis[VM][2], head[VM], num[VM][2], n, m, cnt;
bool vis[VM][2];
void add(int u, int v, int w) { edges[++cnt] = (Edge){v, head[u], w}, head[u] = cnt; }
void Dijkstra(int s, int e) {
memset(vis, false, sizeof(vis));
memset(num, 0, sizeof(num));
for (int i = 1; i <= n; i++) dis[i][0] = INF, dis[i][1] = INF;
dis[s][0] = 0, num[s][0] = 1;
int p, flag;
for (int i = 1; i <= 2 * n - 1; i++) {
int minn = INF;
for (int j = 1; j <= n; j++) {
if (!vis[j][0] && minn > dis[j][0]) {
flag = 0;
minn = dis[p = j][0];
} else if (!vis[j][1] && minn > dis[j][1]) {
flag = 1;
minn = dis[p = j][1];
}
}
if (minn == INF) break;
vis[p][flag] = true;
for (int j = head[p]; j; j = edges[j].next) {
int v = edges[j].to;
if (dis[v][0] > minn + edges[j].w) {
dis[v][1] = dis[v][0];
num[v][1] = num[v][0];
dis[v][0] = minn + edges[j].w;
num[v][0] = num[p][flag];
} else if (dis[v][0] == minn + edges[j].w)
num[v][0] += num[p][flag];
else if (dis[v][1] > minn + edges[j].w) {
dis[v][1] = minn + edges[j].w;
num[v][1] = num[p][flag];
} else if (dis[v][1] == minn + edges[j].w)
num[v][1] += num[p][flag];
}
}
if (dis[e][1] == dis[e][0] + 1) num[e][0] += num[e][1];
printf("%d\n", num[e][0]);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
cnt = 0;
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
int u, v, w;
while (m--) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
int s, e;
scanf("%d%d", &s, &e);
Dijkstra(s, e);
}
return 0;
}
POJ 3463 Sightseeing 题解的更多相关文章
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- poj 3463 Sightseeing——次短路计数
题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...
- POJ 3463 Sightseeing (次短路经数)
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions:10005 Accepted: 3523 Descr ...
- POJ 3463 Sightseeing 【最短路与次短路】
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- POJ 3463 Sightseeing
最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...
- POJ 3463 Sightseeing (次短路)
题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...
- POJ 1637 Sightseeing tour(最大流)
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...
随机推荐
- 举一个有趣的例子,让你轻松搞懂JVM内存管理
目录 前言 例子 源码 输出 图解 深入分析 学以致用 写在最后 前言 在JAVA虚拟机内存管理中,堆.栈.方法区.常量池等概念经常被提到,对理论知识的理解也常常停留在字面意思上,比如说堆内存中存放对 ...
- 曹工说JDK源码(2)--ConcurrentHashMap的多线程扩容,说白了,就是分段取任务
前言 先预先说明,我这边jdk的代码版本为1.8.0_11,同时,因为我直接在本地jdk源码上进行了部分修改.调试,所以,导致大家看到的我这边贴的代码,和大家的不太一样. 不过,我对源码进行修改.重构 ...
- 深入浅出-TCP/IP协议族剖析&&Socket
Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 #简介 该篇文章主要回顾–TCP/I ...
- 如何通过AzureAD平台提供的授权方式访问sharepoint online
官方文档: 1.https://docs.microsoft.com/zh-cn/previous-versions/azure/dn645543(v=azure.100)?redirectedfro ...
- TB6612FNG电机驱动模块
TB6612FNG电机驱动模块 模块原理图 模块的使用 TB6612是双驱动,也就是可以驱动两个电机 下面分别是控制两个电机的IO口 STBY口接单片机的IO口清零电机全部停止, 置1通过AIN1 A ...
- Yii2.0ActiveRecord嵌套子查询(AR子查询)
yii2.0的ActiveRecord是可以嵌套子查询的. 比如从一个子查询里面筛选数据. 首先实例化出来一个Query对象,代表子查询. $subQuery = new \yii\db\Query( ...
- iOS/swift 单选框和复选框
/** 复选框 */ import UIKit class LYBmutipleSelectView: UIView { var selectindexs:[Int]=[]//选中的 //标题数组 v ...
- tomcat的安装部署(windows10)
一.Tomact下载 地址:https://tomcat.apache.org/
- pip超时问题解决
阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ 豆瓣(douban ...
- 简易的phpexcel导出柱状图
首先得把phpexcel扩展的源码拷贝到项目文件下 下面是代码 /** 引入最重要的PHPExcel类库的入口文件 */ require(STK_PATH.'/class/stk/PHPExc ...