题目

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

输入格式

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

One line with two integers N and M, separated by a single space, with \(2 ≤ N ≤ 1,000\) and \(1 ≤ M ≤ 10, 000\): the number of cities and the number of roads in the road map.

M lines, each with three integers A, B and L, separated by single spaces, with \(1 ≤ A, B ≤ N, A ≠ B\) and \(1 ≤ L ≤ 1,000\), describing a road from city \(A\) to city \(B\) with length \(L\).

The roads are unidirectional. Hence, if there is a road from \(A\) to \(B\), then there is not necessarily also a road from \(B\) to \(A\). There may be different roads from a city A to a city B.

One line with two integers \(S\) and \(F\), separated by a single space, with \(1 ≤ S, F ≤ N\) and \(S ≠ F\): the starting city and the final city of the route.

There will be at least one route from \(S\) to \(F\).

输出格式

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

输入样例

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

输出样例

3
2

代码

实际上就是最短路, 但是增加了一个次长路, 也很好解决

在Dijkstra更新时, 每次构建一个新路径, 做一下判断, 不仅更新最短路, 还要更新次短路

记录源点到某点的最短路和次短路

  1. 如果新路径小于最短路, 那么新路径变成最短路, 原来的最短路变成次短路;

  2. 如果新路径等于最短路, 那么最短路方法数+1

  3. 如果新路径大于最短路小于次短路, 更新次短路

  4. 如果新路径等于次短路, 那么次短路方法数+1

代码

#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f, VM = 1010, EM = 10010;
struct Edge { int to, next, w; } edges[EM << 1];
int dis[VM][2], head[VM], num[VM][2], n, m, cnt;
bool vis[VM][2];
void add(int u, int v, int w) { edges[++cnt] = (Edge){v, head[u], w}, head[u] = cnt; }
void Dijkstra(int s, int e) {
memset(vis, false, sizeof(vis));
memset(num, 0, sizeof(num));
for (int i = 1; i <= n; i++) dis[i][0] = INF, dis[i][1] = INF;
dis[s][0] = 0, num[s][0] = 1;
int p, flag;
for (int i = 1; i <= 2 * n - 1; i++) {
int minn = INF;
for (int j = 1; j <= n; j++) {
if (!vis[j][0] && minn > dis[j][0]) {
flag = 0;
minn = dis[p = j][0];
} else if (!vis[j][1] && minn > dis[j][1]) {
flag = 1;
minn = dis[p = j][1];
}
}
if (minn == INF) break;
vis[p][flag] = true;
for (int j = head[p]; j; j = edges[j].next) {
int v = edges[j].to;
if (dis[v][0] > minn + edges[j].w) {
dis[v][1] = dis[v][0];
num[v][1] = num[v][0];
dis[v][0] = minn + edges[j].w;
num[v][0] = num[p][flag];
} else if (dis[v][0] == minn + edges[j].w)
num[v][0] += num[p][flag];
else if (dis[v][1] > minn + edges[j].w) {
dis[v][1] = minn + edges[j].w;
num[v][1] = num[p][flag];
} else if (dis[v][1] == minn + edges[j].w)
num[v][1] += num[p][flag];
}
}
if (dis[e][1] == dis[e][0] + 1) num[e][0] += num[e][1];
printf("%d\n", num[e][0]);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
cnt = 0;
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
int u, v, w;
while (m--) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
int s, e;
scanf("%d%d", &s, &e);
Dijkstra(s, e);
}
return 0;
}

POJ 3463 Sightseeing 题解的更多相关文章

  1. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  2. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  3. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  4. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  5. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  6. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  7. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  8. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  9. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

随机推荐

  1. java实现第四届蓝桥杯阶乘位数

    阶乘位数 题目描述 如图p1.jpg所示,3 x 3 的格子中填写了一些整数. 我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60. 本题的要求就是请你编程判定:对给定的m x n 的格 ...

  2. 【Jquery】判断宽度跳转

    $(window).resize(function(){ var wWidth = screen.width; if( wWidth < 788 ){ window.location.href= ...

  3. iOS — 内存分配与分区

    1  RAM ROM RAM:运行内存,不能掉电存储.ROM:存储性内存,可以掉电存储,例如内存卡.Flash.      由于RAM类型不具备掉电存储能力(即一掉电数据消失),所以app程序一般存放 ...

  4. 分享一个我自己做的 Excel 万年历

    下载链接在此. 纯 Excel 公式实现,带农历,可自定义节日.配色. 带有紧凑日历和记事日历两种日历,均可直接 Ctrl+P 打印,且打印时不带有顶部的控制栏.

  5. 十六进制颜色码及其表示-(6 digit color code)

    我们知道对于RGB颜色系统,颜色是由三个256位的十进制数值表示的: (R:0-255,G:0-255,B:0-255) 那么一个三元组可以确定一种颜色. 然而,在很多配置文件中颜色并不是直接用十进制 ...

  6. 解除git文件处于lock状态方法

    解决办法: 去git文件夹下删除lock文件就可以

  7. mysql主从同步参数

    默认情况下,mysql的主从同步,会启用三个线程,两个IO线程和一个SQL线程.主从同步的主要文件就是binlog文件,从库从主库的binlog中读取数据,然后记录在从库自己的relaylog中,然后 ...

  8. Latex文件本机能正常编译,但在另一台电脑不能编译的解决方法

    问题:同样的文件在台式机能编译出正常的PDF文件,但发现在另一个电脑上不能编译出PDF文件. \documentclass[preprint,10pt,5p,times,twocolumn]{elsa ...

  9. JSON类库Jackson优雅序列化Java枚举类

    1. 前言 在Java开发中我们为了避免过多的魔法值,使用枚举类来封装一些静态的状态代码.但是在将这些枚举的意思正确而全面的返回给前端却并不是那么顺利,我们通常会使用Jackson类库序列化对象为JS ...

  10. Redis Wendows安装步骤

    1.打开cmd命令提示符2.打开cmd如下图,输入Redis下载磁盘名称+“:” ,然后回车 3.如下图:输入"cd" 然后空格,后面是Redis的路径   回车 4.设置服务命令 ...