已知$f(x)=\sum\limits_{k=1}^{2017}\dfrac{\cos kx}{\cos^k x},$则$f(\dfrac{\pi}{2018})=$_____


分析:
设$g(x)=\sum\limits_{k=1}^{2017}\left(\dfrac{\cos kx}{\cos^k x}+i\dfrac{\sin kx}{\cos^k x}\right)$
$=\sum\limits_{k=1}^{2017}\left(\dfrac{\cos x+i\sin x}{\cos x}\right)^{k}$ 
$ =\dfrac{\frac{\cos x+i\sin x}{\cos x}-(\frac{\cos x+i\sin x}{\cos x})^{2018}}{1-\frac{\cos x+i\sin x}{\cos x}}$ 
$=\dfrac{\cos x+i\sin x-\frac{\cos2018x+i\sin2018x}{\cos^{2017}{x}}}{-i\sin x}$
则$g(\dfrac{\pi}{2018})=-1+i\dfrac{\cos\frac{\pi}{2018}+\cos^{-2017}{\frac{\pi}{2018}}}{\sin\frac{\pi}{2018}}$
比较实部可知$f(\dfrac{\pi}{2018})=-1$

思路参考:MT【34】

有时候实数里不容易解决的问题在复数范围内会变得容易。更大的视野带来更好的思路。

练习: 设$f(x)=\dfrac{\sum\limits_{k=1}^{1009}sin(2k-1)x}{\sum\limits_{k=1}^{1009}cos(2k-1)x},$ 则$f(\dfrac{\pi}{2019})=$_____

提示:$z=cosx+isinx,z+z^3+\cdots+z^{2017}=\dfrac{z(1-(z^2)^{1009}}{1-z^2}$,两边比较辐角的正切值.

MT【272】更大的视野,更好的思路.的更多相关文章

  1. 梭子鱼:APT攻击是一盘更大的棋吗?

    随着企业对IT的依赖越来越强,APT攻击可能会成为一种恶意打击竞争对手的手段.目前,APT攻击目标主要有政治和经济目的两大类.而出于经济目的而进行的APT攻击可以获取竞争对手的商业信息,也可使用竞争对 ...

  2. Qt带来的是更加低廉的开发成本和学习成本,对于很多小公司而言,这种优势足以让他们获得更大的利润空间 good

    不能单纯从技术上来看待这个问题,Qt本来是小众的开发平台,个人认为,它的出现只是解决特性场景的特定问题,Qt带来的是更加低廉的开发成本和学习成本,对于很多小公司而言,这种优势足以让他们获得更大的利润空 ...

  3. 在.NET中快速创建一个5GB、10GB或更大的空文件

    对于通过UDP进行打文件传输的朋友应该首先会考虑到一个问题,那就是由于UDP并不会根据先来先到原则进行发送,也许你发送端发送的时候是以包1和包2的顺序传输的,但接收端可能以包2和包1 的顺序来进行接收 ...

  4. [Swift]LeetCode496. 下一个更大元素 I | Next Greater Element I

    You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of n ...

  5. [Swift]LeetCode503. 下一个更大元素 II | Next Greater Element II

    Given a circular array (the next element of the last element is the first element of the array), pri ...

  6. [Swift]LeetCode1019. 链表中的下一个更大节点 | Next Greater Node In Linked List

    We are given a linked list with head as the first node.  Let's number the nodes in the list: node_1, ...

  7. 1197多行事务要求更大的max_binlog_cache_size处理与优化

    1197多语句事务要求更大的max_binlog_cache_size报错   binlog_cache_size:为每个session 分配的内存,在事务过程中用来存储二进制日志的缓存,提高记录bi ...

  8. Leetcode 496. 下一个更大元素 I

    1.题目描述 给定两个没有重复元素的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集.找到 nums1 中每个元素在 nums2 中的下一个比其大的值. nums1 中数字  ...

  9. 下一个更大的数 Next Greater Element

    2018-09-24 21:52:38 一.Next Greater Element I 问题描述: 问题求解: 本题只需要将nums2中元素的下一个更大的数通过map保存下来,然后再遍历一遍nums ...

随机推荐

  1. Python-类的组合与重用

    软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中以另外一个类的对象作为数据属性,称为类的组合 1.继承的方式 通过继承建立了派生类与基类之间的关系,它是一种'是'的关系 ...

  2. python学习第七篇——字典访问键与值

    此程序的目的在于,正确而简单的访问字典的键与值 favorite_languages={ 'jen':['python','c'], 'sarah':['c'], 'edward':['ruby',' ...

  3. hibernate异常找不到get方法org.hibernate.PropertyNotFoundException: Could not find a getter for did in class com.javakc.hibernate.manytomany.entity.CourseEntity

    属性的get方法没找到,可能是CourseEntity类中对应属性没有get方法,如果有就看CourseEntity.hbm.xml属性名称,应该是写错了不和CourseEntity类中属性名相同,修 ...

  4. 用C# BigInteger实现的BigDecimal类,终于可以直接做四则运算了。

    https://code.google.com/p/dotnet-big-decimal/ 这是个BigDecimal类的开源项目,支持Operators +, - and *. 俺给改了改,加上了除 ...

  5. 【学习总结】GirlsInAI ML-diary day-3-数据类型

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day3 数据类型 熟悉一下计算时可能碰到的数据类型.(计算时...) 1-打开jupyter,new一个新python文件 ...

  6. java类库

    Java的应用程序接口(API)以包的形式来组织,每个包提供大量的相关类.接口和异常处理类,这些包的集合就是Java的类库. Java类库可以分为两种 包名以java开始的包是Java核心包(Java ...

  7. mybatis源码分析(二)------------配置文件的解析

    这篇文章中,我们将讲解配置文件中 properties,typeAliases,settings和environments这些节点的解析过程. 一 properties的解析 private void ...

  8. day 7-9 IO模型

    一,同步和异步,阻塞和非阻塞 同步(synchronous):一个进程在执行某个任务时,另外一个进程必须等待其执行完毕,才能继续执行 #所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就 ...

  9. .Net批量插入数据

    1. 一般我们普通数据插入是这样的: 现在我们写一个控制台程序用常规办法添加10000条数据. //以下是批量插入数据的办法 //连接字符串 string str = "Server=.;D ...

  10. Netty ByteBuf和Nio ByteBuffer

    参考https://blog.csdn.net/jeffleo/article/details/69230112 一.简介 Netty中引入了ByteBuf,它相对于ByteBuffer来说,带来了很 ...