【XSY1596】旅行 期望DP
题目大意
有\(m\)个游客, 他们都依次访问城市\(1,2,3,\ldots,n\), 第\(i\)个游客到达任意一个城市后有\(p_i\)的概率会停下, 不再继续前行
设\(c_i\)个乘客经过了城市\(i\),则第\(i\)个人经过第\(j\)个城市时的快乐值是\(\frac{c_j+1}{c_{j-1}}h_{i,j}\)
求每个人的快乐值之和的期望
\(m,n\leq16\)
题解
枚举城市\(x\)和经过当前城市的人的状态\(s\)
设当前状态的人数为\(cnt\),出现概率为\(ps\),所有经过当前城市的人的\(p_i\)的和为\(pn\)
枚举每个人\(i\),\(i\)在\(x+1\)城市对答案的贡献是
\]
即
\]
时间复杂度:\(O(nm2^m)\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double p[20];
double f[20][20];
double h[20][20];
int main()
{
// freopen("b.in","r",stdin);
int n,m;
scanf("%d%d",&m,&n);
int i;
for(i=1;i<=m;i++)
scanf("%lf",&p[i]);
int j;
for(i=1;i<=m;i++)
{
f[i][1]=1;
for(j=2;j<=n;j++)
f[i][j]=f[i][j-1]*p[i];
}
double ans=0;
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
{
scanf("%lf",&h[i][j]);
ans+=f[i][j]*h[i][j];
}
int s;
for(i=1;i<=n-1;i++)
for(s=1;s<(1<<m);s++)
{
double ps=1,sum=0,pn=0;
int cnt=0;
for(j=1;j<=m;j++)
if(s&(1<<(j-1)))
{
ps*=f[j][i];
cnt++;
pn+=p[j];
}
else
ps*=1-f[j][i];
for(j=1;j<=m;j++)
if(s&(1<<(j-1)))
sum+=p[j]*h[j][i+1]*(pn-p[j]+1);
ans+=ps*sum/cnt;
}
printf("%.10lf\n",ans);
return 0;
}
【XSY1596】旅行 期望DP的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
随机推荐
- node express使用
var express = require('express'); var app = express(); app 对象具有以下的方法: 路由HTTP请求:app.METHOD和app.param. ...
- servlet程序HTTP Status 500 - Error instantiating servlet class 解决
在eclipase 中编译 servlet 但是一致报 HTTP Status 500 - Error instantiating servlet class XXX类 的问题 , 解决方法 1. ...
- iRate---一个跳转AppStore评分弹窗
https://www.aliyun.com/jiaocheng/357479.html 摘要:gitHub地址:https://github.com/nicklockwood/iRate可以通过配置 ...
- Django 2.0 学习
Django django是基于MTV结构的WEB框架 Model 数据库操作 Template 模版文件 View 业务处理 在Python中安装django 2.0 1 直接安装 pip inst ...
- Python之切片操作
1.列表list中使用 1.range()生成器 就是list取值的一种方式. 生成器range(),用于写列表的范围,如果只写一个数,就表示从0开始,到写入的值-1: l=list(range(10 ...
- JavaScript中防止重复提交
有这么一种情况: 页面有一个按钮,点击之后会触发Ajax请求,但是用户在点击之后,不知道是否点成功了,于是又点了一下,如果不加处理的话,就会进行两次Ajax请求,并且请求的数据都是一样的,对后端的程序 ...
- PHP中多个文件包含的问题 (一)
使用require或者include来包含文件时,包含的文件的内容相对性,这个很容易搞混,所以记录一下. 这个相对性包括 __DIR__,__FILE__,$_SERVER['PHP_SELF'],$ ...
- 配置router列表
import Vue from "vue"; import VueRouter from 'vue-router'; import Star from '../components ...
- Redis 使用命令行的方式 获取 hash type key 的value值
1. 之前只是非常简单的看了下 get key 和 set key 但是这样 设置的 key value 应该是都 string 类型的 2. 但是没考虑过其他类型的 是如何获取 相关内容的 ,一直 ...
- Chrome 离线安装插件的办法
参考url 学习网址 https://blog.csdn.net/weixin_39068791/article/details/81411938 插件下载地址: http://www.lanfans ...