Problem Description

Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

Author

Gordon V. Cormack

Source

2008-1杭电公开赛(非原创)


思路

就是判断\(a^p\%p==a\),计算\(a^p\)可以用快速幂的方法,快速幂本质也是二分不断加速

代码

#include<bits/stdc++.h>
using namespace std;
typedef __int64 ll; bool isprime(ll x)
{
for(int i=2;i<sqrt(x);i++)
if(x%i==0)
return false;
return true;
}//判断是否为质数 ll quickpower(ll a,ll b,ll c)
{
ll ans =1;
while(b)
{
if(b&1)
ans = (ans*a) % c;
a = (a*a) % c;
b >>= 1;
}
return ans;
}//返回a^b%c的结果
int main()
{
int a,p;
while(cin>>p>>a)
{
if(p==0 && a==0) break;
if(isprime(p))
cout << "no" << endl;
else
{
int ans_power = quickpower(a,p,p);
if(ans_power==a)
cout << "yes" << endl;
else
cout << "no" << endl;
}
}
return 0;
}

Hdoj 1905.Pseudoprime numbers 题解的更多相关文章

  1. Hdoj 1058.Humble Numbers 题解

    Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The ...

  2. hdu 1905 Pseudoprime numbers

    #include<stdio.h> #include<math.h> #define ll long long ll mod; bool Judge(int x) { ;i&l ...

  3. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  4. 找规律/数位DP HDOJ 4722 Good Numbers

    题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数 ...

  5. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  6. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  7. poj Pseudoprime numbers 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4 ...

  8. 【POJ - 3641】Pseudoprime numbers (快速幂)

    Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以  ...

  9. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

随机推荐

  1. Five Dimensional Points CodeForces - 851C (计算几何+暴力)

      C. Five Dimensional Points time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. rbac权限+中间件

    1.权限组件rbac 1.什么是权限 1 项目与应用 2 什么是权限? 一个包含正则表达式url就是一个权限 who what how ---------->True or Flase 2.版本 ...

  3. MySQL分页时统计总记录行数并使用limit返回固定数目的记录

    需求很简单:假设有一个user表,表中实际上有10000条数据,但是我不知道有多少条,我要从数据库中每次取20条数据显示,那么怎么完成呢? 方案一: 首先执行一个 select count(*) as ...

  4. 解决ImportError: cannot import name 'webdriver' from 'selenium' (C:\Users\Mr.Su\PycharmProjects\***\venv\selenium.py)

    报错信息如下图所示: 解决方案:将项目根目录下的自己创建的selenium.py文件重命名.

  5. SQL UPDATE with INNER JOIN

    mysql - SQL UPDATE with INNER JOIN - Stack Overflowhttps://stackoverflow.com/questions/14491042/sql- ...

  6. TortoiseGit push免输密码

    (ฅ>ω<*ฅ) 噫又好了~ TortoiseGit push免输密码的方法 – 晨旭的博客~https://www.chenxublog.com/2016/03/04/tortoiseg ...

  7. CentOS7 修改MAC地址

    CentOS7 修改MAC地址 - mixboot - CSDN博客https://blog.csdn.net/u010953692/article/details/79650522

  8. Azure系列2.1.2 —— BlobContainerProperties

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  9. longquan

    /** * 登录后将数据填写到主数据 */ public void login(String login_nr) { //File f = new File(android.os.Environmen ...

  10. python数据结构与算法第十二天【快速排序】

    1. 原理如图所示: 2.代码实现 def quick_sort(alist, start, end): """快速排序""" # 递归的退 ...