「TJOI2015」概率论

令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数

然后列一个dp

\[f_i=\sum_{j=0}^{i-1} f_j f_{i-j-1}\\
g_i=2\sum_{j=0}^{i-1} f_j g_{i-j-1}
\]

然后显然可以卷,但没有1e5的部分分

然后打表

\[\frac{1}{1} \ \ \frac{3}{3} \ \ \frac{6}{5} \ \ \frac{10}{7} \ \ \frac{15}{9}...
\]

然后猜到通项是

\[\frac{n*(n-1)/2}{n*2-1}
\]

上面是乱搞做法

正解是卡特兰数,生成函数之类的一些东西,留坑待填

话说如果没看出来卡特兰数放在18年是不是就凉了啊...


Code:

#include <cstdio>
double n;
int main()
{
scanf("%lf",&n);
double a=(1+n)*n/2,b=n*2-1,ans=a/b;
printf("%.9lf\n",ans);
return 0;
}

2019.2.25

「TJOI2015」概率论 解题报告的更多相关文章

  1. 「TJOI2015」旅游 解题报告

    「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...

  2. 「TJOI2015」组合数学 解题报告

    「TJOI2015」组合数学 这不是个贪心吗? 怎么都最小链覆盖=最大点独立集去了 注意到一个点出度最多只有2,可以贪心一下出度的去向 按读入顺序处理就可以,维护一个\(res_i\)数组,表示上一行 ...

  3. 「TJOI2015」线性代数 解题报告

    「TJOI2015」线性代数 和牛客某题很像 在和里面有\(B_{i,j}\)要求是\(A_i,A_j\)都为\(1\),和里面减去\(C_i\)要求\(A_i\)为\(1\),然后先把贡献也就是\( ...

  4. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  5. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  6. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  7. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  8. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  9. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

随机推荐

  1. 福州大学软件工程1816 | W班 第8次作业[团队作业,随堂小测——校友录]

    作业链接 团队作业,随堂小测--校友录 评分细则 本次个人项目分数由两部分组成(博客分满分40分+程序得分满分60分) 博客和程序得分表 评分统计图 千帆竞发图 总结 旅法师:实现了更新,导出,查询, ...

  2. 福州大学软件工程1816 | W班 第10次作业[软件工程实践总结]

    作业链接 个人作业--软件工程实践总结 评分细则 本次由五个问题(每个十分)+创意照片(五分)+附加题(十分)组成 评分统计图 千帆竞发图 汇总成绩排名链接 汇总链接

  3. 10-vue的介绍

    vue的作者叫尤雨溪,中国人.自认为很牛逼的人物,也是我的崇拜之神. 关于他本人的认知,希望大家读一下这篇关于他的文章,或许你会对语言,技术,产生浓厚的兴趣.https://mp.weixin.qq. ...

  4. [转帖]Windows NT 之父 - David Cutler

    Windows NT 之父 - David Cutler https://www.cnblogs.com/wangwust/p/6826200.html 曾经下过 夺路狂奔的电子书 但是还没看完.. ...

  5. 【转帖】远程显示(操作) 服务器 GUI 程序(图形化界面) (基于 X11 Forwarding + Centos + MobaXterm)

    远程显示(操作) 服务器 GUI 程序(图形化界面) (基于 X11 Forwarding + Centos + MobaXterm) https://zhuanlan.zhihu.com/p/310 ...

  6. jenkins配置SSH远程服务器连接

    之前用jenkins做了一个自动发布测试,配置任务的Post Steps时,选择的是执行shell命令.如下图: 这是在本192.168.26.233服务器上测试的,此服务器上运行jenkins,to ...

  7. CLOUD设置过滤方案不共享

    1.打开BOS,找到应用框架-动态表单-过滤方案另存 2.找到共享给他人,把可见性全部去掉

  8. python学习笔记(3)--turtle简单绘制

    参考:大学生mooc 北京理工大学的python程序与设计课程 蟒蛇绘制代码如下: #pythonDraw.py import turtle turtle.setup(650,350,200,200) ...

  9. sonar结合jenkins

    一.下载jenkins插件 二.系统设置 三.获取token值 4.调整 Jenkins 构建设置

  10. GlusterFS卷的种类

    1.分布卷 在分布式卷中,文件随机扩展到卷中的砖块中. 使用分布式卷,需要扩展存储和冗余不是很重要,或由其他硬件/软件层提供. 创建语法:gluster volume create [transpor ...