题目描述

  有一个\(n\)个元素的随机置换\(P\),求\(P\)分解出的轮换个数的\(m\)次方的期望\(\times n!\)

  \(n\leq 100000,m\leq 30\)

题解

解法一

  有一种暴力的做法:设\(f_{i,j}\)为\(i\)个元素的随机置换\(P\),分解出的轮换个数的\(j\)次方的期望\(\times i!\)

  考虑第\(P_i\)是什么。

  如果是\(i\),那么就多了一个轮换,用二项式定理展开得到\(\sum_{k=0}^jf_{i-1,k}\binom{j}{k}\)。

  如果不是\(i\),那么可以看成把\(i\)插入到已有的轮换中,有\(i-1\)种方法,答案就是\((i-1)f_{i-1,j}\)

  处理出组合数直接DP即可。

  时间复杂度:\(O(nm^2)\)

解法二

  考虑排列中轮换的个数为\(i\)的方案数,发现答案就是\(\begin{bmatrix}n\\i\end{bmatrix}\)。

  推一波式子。

\[\begin{align}
ans&=\sum_{i=1}^n\begin{bmatrix}n\\i\end{bmatrix}i^m\\
&=\sum_{i=1}^n\begin{bmatrix}n\\i\end{bmatrix}\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\binom{i}{j}j!\\
&=\sum_{i=1}^m\begin{Bmatrix}m\\i\end{Bmatrix}i!\sum_{j=i}^n\begin{bmatrix}n\\j\end{bmatrix}\binom{j}{i}\\
&=\sum_{i=1}^m\begin{Bmatrix}m\\i\end{Bmatrix}\begin{bmatrix}n+1\\i+1\end{bmatrix}i!\\
\end{align}
\]

  最后这个式子是有组合意义的。

  你要把 \(n\) 个元素分成 \(j\) 个环,然后选 \(i\) 个环出来。这个的方案数等价于先组出 \(i\) 个环,然后把剩下的元素放到一起,把所有元素的后继看成一个排列,那么组出剩下 \(j-i\) 个环的方案数就是元素个数的阶乘,即加上一个物品后组成一个环的方案数。

  处理出斯特林数直接计算。

  时间复杂度:\(O(nm+m^2)\)

代码

解法一

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
#include<iostream>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const ll p=1000000007;
ll f[100010][40];
ll fac[100010];
ll c[110][110];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=0;i<=k;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%p;
}
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=fac[i-1]*i%p;
f[0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=k;j++)
for(int k=0;k<=j;k++)
f[i][j]=(f[i][j]+f[i-1][k]*c[j][k])%p;
for(int j=0;j<=k;j++)
f[i][j]=(f[i][j]+f[i-1][j]*(i-1))%p;
}
printf("%lld\n",f[n][k]);
return 0;
}

解法二

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
#include<iostream>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
s=c-'0';
while((c=getchar())>='0'&&c<='9')
s=s*10+c-'0';
return s;
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const int p=1000000007;
int s[100010][32];
int S[31][31];
int main()
{
int n,m;
n=rd();
m=rd();
s[0][0]=1;
for(int i=1;i<=n+1;i++)
for(int j=1;j<=m+1;j++)
s[i][j]=(s[i-1][j-1]+ll(i-1)*s[i-1][j])%p;
S[0][0]=1;
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
S[i][j]=(S[i-1][j-1]+(ll)j*S[i-1][j])%p;
int ans=0;
int u=1;
for(int i=1;i<=m;i++)
{
u=(ll)u*i%p;
ans=(ans+(ll)u*S[m][i]%p*s[n+1][i+1])%p;
}
printf("%d\n",ans);
return 0;
}

【XSY1262】【GDSOI2015】循环排插 斯特林数的更多相关文章

  1. [HDU 3625]Examining the Rooms (第一类斯特林数)

    [HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次, ...

  2. CF960G-Bandit Blues【第一类斯特林数,分治,NTT】

    正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \( ...

  3. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  4. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  5. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  6. BZOJ4559 JLOI2016成绩比较(容斥原理+组合数学+斯特林数)

    容斥一发改为计算至少碾压k人的情况数量,这样对于每门课就可以分开考虑再相乘了.剩下的问题是给出某人的排名和分数的值域,求方案数.枚举出现了几种不同的分数,再枚举被给出的人的分数排第几,算一个类似斯特林 ...

  7. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  8. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  9. 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)

    Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...

随机推荐

  1. python-入门的第一个爬虫例子

    前言: 此文为大家入门爬虫来做一次简单的例子,让大家更直观的来了解爬虫. 本次我们利用 Requests 和正则表达式来抓取豆瓣电影的相关内容. 一.本次目标: 我们要提取出豆瓣电影-正在上映电影名称 ...

  2. H5 24-CSS三大特性之继承性

    24-CSS三大特性之继承性 我是段落 我是段落 我是超链接 我是大标题 <!DOCTYPE html> <html lang="en"> <head ...

  3. php 简单的学习GD库绘制图片并传回给前端实现方式

    1.基本的GD库绘制图片汇总 2.后台实现小案例 <?php // $img = imagecreatetruecolor(200,40); // var_dump($img); // 利用GD ...

  4. Day3 Python基础之while、for循环(二)

    1.数据运算 算数运算 整除运算:// 取余运算:% 指数运算:** 赋值运算 b+=a;等价于b=b+a 比较运算 >,<,==,!=,>=,<= 逻辑运算符 and .or ...

  5. 每周分享之cookie详解

    本章从JS方向讲解cookie的使用.(实质上后端代码也是差不多用法,无非读取和设置两块) 基本用法:document.cookie="username=pengpeng"; 修改 ...

  6. anaconda 出现add 。。。进不去

    找到.condarc 文件  C:\Users\leiyi内 把里面内容替换为 channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pk ...

  7. Vue-router路由使用,单页面的实现

    1.安装路由系统 NPM npm install vue-router 2.在main.js中进入引用 import VueRouter from 'vue-router' 3.创建三个空的组件: V ...

  8. linux命令:拷贝命令家族(cp、scp、rsync)

    Linux命令中:rsync和cp之间的区别 - 小 楼 一 夜 听 春 雨 - 博客园https://www.cnblogs.com/kex1n/p/7008178.html cp,scp,rsyn ...

  9. API接口TOKEN设计

    首先需要知道API是什么?   API(Application Programming Interface)即应用程序接口.你可以认为 API 是一个软件组件或是一个 Web 服务与外界进行的交互的接 ...

  10. fiddler查看IP地址和请求响应时间

    (一)fiddler查看IP地址 1.点击菜单栏rules——customize rules… 2.ctrl+f搜索“static function main” 3.在main函数里加入下面一行代码, ...