学习自:链接以及百度百科

以及:https://www.bilibili.com/video/av18735440?from=search&seid=363548948825132979

理解树状数组

概念

假设数组a[1..n],那么查询a[1]+...+a[n]的时间是log级别的,而且是一个在线的数据结构,支持随时修改某个元素的值,复杂度也为log级别。

观察这棵树,容易发现:

  C1 = A1

  C2 = A1 + A2

  C3 = A3
  C4 = A1 + A2 + A3 + A4
  C5 = A5
  C6 = A5 + A6
  C7 = A7
  C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
  ......
  C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
  这里有一个有趣的性质:
  设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,
  所以很明显:Cn = A(n – 2^k + 1) + ... + An
  算这个2^k有一个快捷的办法,定义一个函数如下即可:
  int lowerbit(int x){
    return x&(x^(x–1));
  }
 
  利用机器补码特性,也可以写成:
  int lowerbit(int x){
       return x&-x;
  }
  当想要查询一个SUM(n)(求a[n]的和),可以依据如下算法即可:
  step1: 令sum = 0,转第二步;
  step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;
  step3: 令n = n – lowbit(n),转第二步。
  可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:
  n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。
  那么修改呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。
  所以修改算法如下(给某个结点i加上x):
  step1: 当i > n时,算法结束,否则转第二步;
  step2: Ci = Ci + x, i = i + lowbit(i)转第一步。
  i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。
  对于数组求和来说树状数组简直太快了!
  注:
  求lowbit(x)的建议公式:
  lowbit(x):=x and -x;
  或lowbit(x):=x and (x xor (x - 1));
  lowbit(x)即为2^k的值。
 
以上对树状数组的解释来自百度百科,比较难以理解。
 
  由图我们可以知道C8 是 A1+.....+A8,但是C6是 A5+A6,为什么要这么做?因为这样做会使操作更加简单,这样会使复杂度被log化。
C8可以看作A1......A8的左半边和+右半边和,而其中左半边和是C4,右半边其实也是同样的规则把a5......a8一分为二……继续下去都是一分为二直到不能分。树状数组也就是很巧妙的运用这种二分法来构建。
  那么,怎么实现这种二分法?lowbit(k)就是把k的二进制的高位1全部清空,只留下最低位的1,比如10的二进制是1010,则lowbit(k)=lowbit(1010)=0010。
比较普遍的方法lowbit(k)=k&-k,这是位运算。我们知道一个数加一个负号是把这个数的二进制取反然后+1,如k=10时,-10的二进制就是-1010=0101+1=0110,然后k&-k就是1010&0110,答案就是0010了!这样就可以把A数组和C数组联系在一起,设节点编号为x,C(x)是A(x)往左连续求lowbit(k)个数的和,比如lowbit(0110)=0110&0010=0010=2。C[0110]=A[0110]+A[0101]。可以看到其实只有低位的1起作用,因为很显然可以写出c[0010]=a[0010]+a[0001],这就为什么我们任何数都只关心它的lowbit,因为高位不起作用(基于我们的二分规则它必须如此!),除非除了高位其余位都是0,这时本身就是lowbit。
  
void add(int k,int num) {
while(k<=n) {
tree[k]+=num;
k+=k&-k;
}
}

【题目链接】

Stars

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 45080   Accepted: 19567
  • Description
Astronomers often examine star maps where stars are represented by points on a plane and each star has Cartesian coordinates. Let the level of a star be an amount of the stars that are not higher and not to the right of the given star. Astronomers want to know the distribution of the levels of the stars. 

For example, look at the map shown on the figure above. Level of the star number 5 is equal to 3 (it's formed by three stars with a numbers 1, 2 and 4). And the levels of the stars numbered by 2 and 4 are 1. At this map there are only one star of the level 0, two stars of the level 1, one star of the level 2, and one star of the level 3.

You are to write a program that will count the amounts of the stars of each level on a given map.

  • Input
The first line of the input file contains a number of stars N (1<=N<=15000). The following N lines describe coordinates of stars (two integers X and Y per line separated by a space, 0<=X,Y<=32000). There can be only one star at one point of the plane. Stars are listed in ascending order of Y coordinate. Stars with equal Y coordinates are listed in ascending order of X coordinate.
  • Output
The output should contain N lines, one number per line. The first line contains amount of stars of the level 0, the second does amount of stars of the level 1 and so on, the last line contains amount of stars of the level N-1.

Sample Input

5
1 1
5 1
7 1
3 3
5 5

Sample Output

1
2
1
1
0
  • Hint
This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.

【题意】

  就是求每个小星星左小角的星星的个数。坐标按照Y升序,Y相同X升序的顺序给出 由于y轴已经排好序,可以按照x坐标建立一维树状数组。

#include <stdio.h>
#include <string.h>
const int MAXN=;
const int MINN=;
int tree[MAXN];//下标为横坐标
int level[MINN];//下标为等级数
/*int lowerbit(int x)
{
return x&-x;
}*/
void add(int k,int num)
{
while(k<=MAXN)
{
tree[k]+=num;
k+=k&-k;
}
}
int read(int k)//1~k的区间和
{
int sum=;
while(k)
{
sum+=tree[k];
k-=k&-k;
}
return sum;
}
int main()
{
int n,x,y,i;
memset(tree,,sizeof(tree));
memset(level,,sizeof(level));
while(scanf("%d",&n)!=EOF)
{
for(i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
int temp=read(x+);//加入x+1,是为了避免0,X是可能为0的
level[temp]++;
add(x+,);
}
for(i=;i<n;i++)
printf("%d\n",level[i]);
}
return ;
}

POJ 2352 树状数组的更多相关文章

  1. POJ 2352Stars 树状数组

    Stars Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42898   Accepted: 18664 Descripti ...

  2. POJ 3321 树状数组(+dfs+重新建树)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27092   Accepted: 8033 Descr ...

  3. poj 2299 树状数组求逆序数+离散化

    http://poj.org/problem?id=2299 最初做离散化的时候没太确定可是写完发现对的---由于后缀数组学的时候,,这样的思维习惯了吧 1.初始化as[i]=i:对as数组依照num ...

  4. poj 3928 树状数组

    题目中只n个人,每个人有一个ID和一个技能值,一场比赛需要两个选手和一个裁判,只有当裁判的ID和技能值都在两个选手之间的时候才能进行一场比赛,现在问一共能组织多少场比赛. 由于排完序之后,先插入的一定 ...

  5. POJ 2299 树状数组+离散化求逆序对

    给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...

  6. poj 2299 树状数组求逆序对数+离散化

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 54883   Accepted: 20184 ...

  7. poj 2182 树状数组

    这题对于O(n^2)的算法有很多,我这随便贴一个烂的,跑了375ms. #include<iostream> #include<algorithm> using namespa ...

  8. POJ 2299树状数组求逆序对

    求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...

  9. MooFest POJ - 1990 (树状数组)

    Every year, Farmer John's N (1 <= N <= 20,000) cows attend "MooFest",a social gather ...

随机推荐

  1. NLTK 第一篇:介绍

    NLTK(Natural Language Toolkit)是一个功能强大的自然语言处理工具,它提供了一组自然语言算法,例如切分词(Tokenize),词性标注(Part-Of-Speech Tagg ...

  2. Ansible 简介

    Ansible 是一个开源的基于 OpenSSH 的自动化配置管理工具.可以用它来配置系统.部署软件和编排更高级的 IT 任务,比如持续部署或零停机更新.Ansible 的主要目标是简单和易用,并且它 ...

  3. SAI窗口无法移动

    昨天开SAI遇到了一个很奇怪的问题,改变了双屏的位置后SAI的窗口不能移动两边也有黑边,貌似是这样,标题栏只能进行上下改变窗口大小,不能移动窗体 问题是这样出现的:把任务栏解除锁定拖到侧边就会这样 解 ...

  4. MySQL中varchar与char的区别以及varchar(50)中的50代表的涵义

     varchar与char的区别: 1).varchar与char的区别char是一种固定长度的类型,varchar则是一种可变长度的类型 尽可能的使用 varchar 代替 char ,因为首先变长 ...

  5. Python2和Python3中urllib库中urlencode的使用注意事项

    前言 在Python中,我们通常使用urllib中的urlencode方法将字典编码,用于提交数据给url等操作,但是在Python2和Python3中urllib模块中所提供的urlencode的包 ...

  6. ios点击输入框,界面放大解决方案

    当我们编写的input宽度没有占满屏幕宽度,而且又没有申明meta,就会出现点击输入框,界面放大这个问题. 下面我直接给出解决方案: <meta name="viewport" ...

  7. apach ab 安装时的错误

    1.cmd进入bin下:执行httpd -k install 需要管理员 登陆安装 我们打开conf文件夹,找到httpd.conf,修改如下内容,让serverroot指向你的安装位置: Defin ...

  8. [微软].net2.1 的兼容支持情况.

    dotnet core 现在看起来 不支持xp 不支持 win10 最早版本的 和 版本. 军工客户 如果还不升级 winxp的话 可能还是没法用(客户端运行时) 不过根据前段时间安装的国产linux ...

  9. CSS3 Flexbox轻巧实现元素的水平居中和垂直居中

    CSS3 Flexbox轻松实现元素的水平居中和垂直居中 网上有很多关于Flex的教程,对于Flex的叫法也不一,有的叫Flexbox,有的叫Flex,其实这两种叫法都没有错,只是Flexbox旧一点 ...

  10. 剑指offer(7)

    今天的几道题目都是关于斐波那契数列的. 题目1: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 传统的方法采用递归函数,这种 ...