E - Reachability from the Capital
思路:首先使用tarjan算法进行染色,缩点。到最后判断 缩减后 入度为零的不含有城市中心的强连通子图的个数就可以了!!!
原因,染完色之后,如果有入度为0的强连通子图,那么这个点就可能符合,然后吧满足这些条件的记录一下。注意,在累加 的时候,不能将入度为0的含有城市中心的强连通子图计算在内,因为这个图中,有城市中心的强连通图中,这个图中的其他所有的点都能由城市中心到达,所以不用累加。
代码如下:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
# define maxn
vector<int >wakaka[maxn];
map<int,int>p;
stack<int>q;
int dfn[maxn],low[maxn],vis[maxn];
int out[maxn],cnt[maxn],color[maxn],in[maxn];
int num,ans;
void tarjan(int u)
{
vis[u]=;
q.push(u);
low[u]=dfn[u]=++num;
int len=wakaka[u].size();
for(int i=; i<len; i++)
{
int v=wakaka[u][i];
if(vis[v]==)
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vis[v]==)
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
ans++;
int top;
do
{
top=q.top();
q.pop();
vis[top]=-;
color[top]=ans;
}
while(top!=u);
}
}
int main()
{
int n,m,t;
while(cin>>n>>m>>t)
{
num=ans=;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
memset(out,,sizeof(out));
memset(in,,sizeof(in));
memset(color,,sizeof(color));
while(!q.empty())q.pop();
for(int i=; i<=n; i++)
{
wakaka[i].clear();
}
p.clear();
for(int i=; i<=m; i++)
{
int u,v;
cin>>u>>v;
p[u]++;
p[v]++;
wakaka[u].push_back(v);
}
for(int i=; i<=n; i++)
{
if(vis[i]==)
tarjan(i);
}
//cout<<color[1]<<endl<<color[2]<<endl;
for(int i=; i<=n; i++)
{
int len=wakaka[i].size();
for(int j=; j<len; j++)
{
if(color[i]!=color[wakaka[i][j]])
{
in[color[i]]++;
out[color[wakaka[i][j]]]++;
}
}
cnt[color[i]]++;
}
int t1=,t2=;
for(int i=; i<=ans; i++)
{
if(in[i]==)
t1++;
if(out[i]==&&i!=color[t])
{
t2++;
}
}
cout<<t2<<endl;
//else {
//cout<<max(t1,t2)<<endl;
//}
//}
}
return ;
}
E - Reachability from the Capital的更多相关文章
- E. Reachability from the Capital dfs暴力
E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...
- Reachability from the Capital CodeForces - 999E (强连通)
There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...
- Reachability from the Capital
题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...
- CF999E Reachability from the Capital来自首都的可达性
题目大意: 有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达 这题一看就是一个缩点啊 其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量( ...
- Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)
题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是 在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...
- Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)
题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...
- [CF999E]Reachability from the Capital
题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点 题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答 ...
- E. Reachability from the Capital(tarjan+dfs)
求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...
- codeforces#999 E. Reachability from the Capital(图论加边)
题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...
随机推荐
- io系列之其他类
一.File类:将文件或者文件夹封装成对象. 方便对文件和文件夹的属性信息进行操作. File对象可以作为参数传递给流的构造函数. 注意: 文件夹名称也可带有扩展名. 构造函数: File(Strin ...
- C语言进阶--DAY3
主要讲解数组和指针有关问题 1. 数组名的本质是一个常量指针 2. 内存编址的最小单位是字节,对于变量来说,一个变量可以取1.2.4.8等字节,对变量取地址来说,取的是低位字节的地址,在32位机中其对 ...
- C#Windows服务程序安装常见问题解决方法
C#Windows服务程序安装是如何的呢?让我们开始吧: C#Windows服务程序安装1. 在服务程序的是设计窗体中,点击右键“添加安装程序”,添加服务安装程序.否则,安装时会出现如下 错误: 正在 ...
- 点赞功能与redis的相遇
https://www.jianshu.com/p/2ab76d5bde71 或者 https://kikoroc.com/2016/06/07/dev-like-function-with-redi ...
- php小项目踩坑以及其中的注意点(第二篇)
用户登录页面 1.通过数据库验证用户名和密码(可以将里面要用到的数据库信息,放入到一个config文件中) <?php define('DB_HOST','localhost'); define ...
- Mysql查询数据库 整理
一. 查询数据: 查询所有列:SELECT * FROM student; 查询指定列:SELECT id,NAME,gender FROM student; 格式:select字段名, ...
- JSON的简单使用_解析前台传来的JSON数据
package cn.rocker.json; import org.junit.Test; import net.sf.json.JSONArray; import net.sf.json.JSON ...
- XenServer中虚拟机和快照导出与导入
我们在工作中经常会遇到,把Xenserver中的虚拟机或者快照导出,然后导入到另一台Xenserver,或者导出来备份下来,以防虚拟机出现故障. 下面介绍一下用xe命令如何导出/导入虚拟机或快照,当然 ...
- Selenium模块的使用
Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开发的,类型像我们玩游戏用的按键精灵,可以按指定的命令自动操作,不同是Selenium 可以直接运行在浏览器上,它支持所有主流的浏 ...
- python js(JavaScript)初识
####################总结############## 引入: 可以在body标签中放入<script type=”text/javascript”></scrip ...