题目链接:https://vjudge.net/contest/236513#problem/E
大意:给你n条边的关系,输入的第一个只指向第一个,然后让你判断要想从指定的点到达剩下的所有的点,问你最少需要添加多少条边才符合要求。

思路:首先使用tarjan算法进行染色,缩点。到最后判断 缩减后 入度为零的不含有城市中心的强连通子图的个数就可以了!!!

原因,染完色之后,如果有入度为0的强连通子图,那么这个点就可能符合,然后吧满足这些条件的记录一下。注意,在累加 的时候,不能将入度为0的含有城市中心的强连通子图计算在内,因为这个图中,有城市中心的强连通图中,这个图中的其他所有的点都能由城市中心到达,所以不用累加。

代码如下:

 

 #include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
# define maxn
vector<int >wakaka[maxn];
map<int,int>p;
stack<int>q;
int dfn[maxn],low[maxn],vis[maxn];
int out[maxn],cnt[maxn],color[maxn],in[maxn];
int num,ans;
void tarjan(int u)
{
vis[u]=;
q.push(u);
low[u]=dfn[u]=++num;
int len=wakaka[u].size();
for(int i=; i<len; i++)
{
int v=wakaka[u][i];
if(vis[v]==)
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vis[v]==)
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
ans++;
int top;
do
{
top=q.top();
q.pop();
vis[top]=-;
color[top]=ans;
}
while(top!=u);
}
}
int main()
{
int n,m,t;
while(cin>>n>>m>>t)
{
num=ans=;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
memset(out,,sizeof(out));
memset(in,,sizeof(in));
memset(color,,sizeof(color));
while(!q.empty())q.pop();
for(int i=; i<=n; i++)
{
wakaka[i].clear();
}
p.clear();
for(int i=; i<=m; i++)
{
int u,v;
cin>>u>>v;
p[u]++;
p[v]++;
wakaka[u].push_back(v);
}
for(int i=; i<=n; i++)
{
if(vis[i]==)
tarjan(i);
}
//cout<<color[1]<<endl<<color[2]<<endl;
for(int i=; i<=n; i++)
{
int len=wakaka[i].size();
for(int j=; j<len; j++)
{
if(color[i]!=color[wakaka[i][j]])
{
in[color[i]]++;
out[color[wakaka[i][j]]]++;
}
}
cnt[color[i]]++;
}
int t1=,t2=;
for(int i=; i<=ans; i++)
{
if(in[i]==)
t1++;
if(out[i]==&&i!=color[t])
{
t2++;
}
}
cout<<t2<<endl;
//else {
//cout<<max(t1,t2)<<endl;
//}
//}
}
return ;
}

E - Reachability from the Capital的更多相关文章

  1. E. Reachability from the Capital dfs暴力

    E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...

  2. Reachability from the Capital CodeForces - 999E (强连通)

    There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...

  3. Reachability from the Capital

    题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...

  4. CF999E Reachability from the Capital来自首都的可达性

    题目大意: 有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达 这题一看就是一个缩点啊 其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量( ...

  5. Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)

    题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是  在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...

  6. Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)

    题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...

  7. [CF999E]Reachability from the Capital

    题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点 题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答 ...

  8. E. Reachability from the Capital(tarjan+dfs)

    求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...

  9. codeforces#999 E. Reachability from the Capital(图论加边)

    题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...

随机推荐

  1. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  2. Linux上svn搭建

    安装svn yum -y install subversion 2.创建版本库 svnadmin  create /home/svn/test 3.配置用户 vim /home/svn/test/co ...

  3. goto语句

    让程序直接跳到自定义标签位置 public static void Main(string[] args) { ; goto myLabel;AppDomainInitializer//直接跳到标签m ...

  4. C# 封装SqlBulkCopy,让批量插入更方便

    关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...

  5. Centos7安装Mysql5.7方法总结 - 实操手册

    Centos7.x版本下针对Mysql的安装和使用多少跟之前的Centos6之前版本有所不同的,废话就不多赘述了,下面介绍下在centos7.x环境里安装mysql5.7的几种方法:一.yum方式安装 ...

  6. javaMail简介(一)

    一:开发javaMail用到的协议 SMTP(simple Message Transfer Protocal):简单消息传输协议.发送邮件时使用的协议,描述了数据该如何表示,默认端口为:25 POP ...

  7. 集成学习算法汇总----Boosting和Bagging(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  8. MySQL入门介绍(mysql-8.0.13)

    MySQL入门介绍(mysql-8.0.13单机部署) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MySQL数据库介绍 1>.MySQL是一种开放源代码的关系型数据库 ...

  9. TensorFlow tensor张量拼接concat - split & stack - unstack

    TensorFlow提供两种类型的拼接: tf.concat(values, axis, name='concat'):按照指定的已经存在的轴进行拼接 tf.stack(values, axis=0, ...

  10. inux进程/线程调度策略与 进程优先级

    目的: 系统性的认识linux的调度策略(SCHED_OTHER.SCHED_FIFO.SCHED_RR): 实时调度?分时调度? 混搭系统(实时任务+分时任务),怎样调度. linux的调度策略 l ...