E - Reachability from the Capital
思路:首先使用tarjan算法进行染色,缩点。到最后判断 缩减后 入度为零的不含有城市中心的强连通子图的个数就可以了!!!
原因,染完色之后,如果有入度为0的强连通子图,那么这个点就可能符合,然后吧满足这些条件的记录一下。注意,在累加 的时候,不能将入度为0的含有城市中心的强连通子图计算在内,因为这个图中,有城市中心的强连通图中,这个图中的其他所有的点都能由城市中心到达,所以不用累加。
代码如下:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
# define maxn
vector<int >wakaka[maxn];
map<int,int>p;
stack<int>q;
int dfn[maxn],low[maxn],vis[maxn];
int out[maxn],cnt[maxn],color[maxn],in[maxn];
int num,ans;
void tarjan(int u)
{
vis[u]=;
q.push(u);
low[u]=dfn[u]=++num;
int len=wakaka[u].size();
for(int i=; i<len; i++)
{
int v=wakaka[u][i];
if(vis[v]==)
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vis[v]==)
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
ans++;
int top;
do
{
top=q.top();
q.pop();
vis[top]=-;
color[top]=ans;
}
while(top!=u);
}
}
int main()
{
int n,m,t;
while(cin>>n>>m>>t)
{
num=ans=;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
memset(out,,sizeof(out));
memset(in,,sizeof(in));
memset(color,,sizeof(color));
while(!q.empty())q.pop();
for(int i=; i<=n; i++)
{
wakaka[i].clear();
}
p.clear();
for(int i=; i<=m; i++)
{
int u,v;
cin>>u>>v;
p[u]++;
p[v]++;
wakaka[u].push_back(v);
}
for(int i=; i<=n; i++)
{
if(vis[i]==)
tarjan(i);
}
//cout<<color[1]<<endl<<color[2]<<endl;
for(int i=; i<=n; i++)
{
int len=wakaka[i].size();
for(int j=; j<len; j++)
{
if(color[i]!=color[wakaka[i][j]])
{
in[color[i]]++;
out[color[wakaka[i][j]]]++;
}
}
cnt[color[i]]++;
}
int t1=,t2=;
for(int i=; i<=ans; i++)
{
if(in[i]==)
t1++;
if(out[i]==&&i!=color[t])
{
t2++;
}
}
cout<<t2<<endl;
//else {
//cout<<max(t1,t2)<<endl;
//}
//}
}
return ;
}
E - Reachability from the Capital的更多相关文章
- E. Reachability from the Capital dfs暴力
E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...
- Reachability from the Capital CodeForces - 999E (强连通)
There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...
- Reachability from the Capital
题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...
- CF999E Reachability from the Capital来自首都的可达性
题目大意: 有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达 这题一看就是一个缩点啊 其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量( ...
- Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)
题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是 在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...
- Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)
题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...
- [CF999E]Reachability from the Capital
题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点 题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答 ...
- E. Reachability from the Capital(tarjan+dfs)
求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...
- codeforces#999 E. Reachability from the Capital(图论加边)
题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...
随机推荐
- JS学习笔记Day6
一.数组 1.数组就是个容器,里面可以存放任意类型的数 2.定义数组:1)var arr = []: 2)var arr = new Array():构造函数定义方式,如果括号中有一个整数,该正数代表 ...
- centos7 mysql-server 安装过程
官网下载安装mysql-server # wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm # rpm -i ...
- 用python画三角函数
Pyplot http://www.labri.fr/perso/nrougier/teaching/matplotlib/ pyplot提供了一个方便的matplotlib基于对象库的借口,是模仿了 ...
- (链表) 206. Reverse Linked List
Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4-> ...
- 洛谷P1762 杨辉三角,规律
https://www.luogu.org/problemnew/show/P1762 题意:给定一个正整数n,请输出杨辉三角形前n行的偶数个数对1000003取模后的结果. 由于N <= 1e ...
- python对象的不同参数集合
如下,我们已经有了一个从Contact类继承过来的Friend类 class ContactList(list): def search(self, name): '''Return all cont ...
- springboot配置jsp
spring.mvc.view.prefix= /WEB-INF/jsp/ spring.mvc.view.suffix= .jsp pom.xml <!--jsp支持--> <!- ...
- slider插件制作轮播图
html代码: <div id="banner_tabs" class="flexslider"> <ul class="slide ...
- Go GraphQL初学者教程
Go GraphQL初学者教程 https://tutorialedge.net/golang/go-graphql-beginners-tutorial/ https://tutorialedge. ...
- 神经网络4_BP神经网络
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...