题目中有一个重要的信息是:每一种灯泡只能换成比它电压更大的灯泡,因此电压的大小限制了状态的转移。因此,在这里按照电压从小到大把每种灯泡排序,使得在考虑后面的灯泡时,前面的灯泡自然可以换成后面的灯泡。状态转移方程为\(dp[i]=max(dp[j]+(s[i]-s[j])*c[i]+k[i]),j\in[0,i-1]​\),s[i] 表示前 i 种灯泡的数量。

代码如下:

#include <bits/stdc++.h>
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=1010; int n,dp[maxn],s[maxn];
struct node{
int volt,src,cost,num;
}l[maxn]; bool cmp(const node& x,const node& y){
return x.volt<y.volt;
}
void init(){
cls(dp,0x3f);cls(l,0);cls(s,0);
} int main(){
while(scanf("%d",&n)&&n){
init();
for(int i=1;i<=n;i++)
scanf("%d%d%d%d",&l[i].volt,&l[i].src,&l[i].cost,&l[i].num); dp[0]=0;
sort(l+1,l+n+1,cmp); for(int i=1;i<=n;i++)
s[i]=s[i-1]+l[i].num; for(int i=1;i<=n;i++)
for(int j=0;j<i;j++)
dp[i]=min(dp[i],dp[j]+(s[i]-s[j])*l[i].cost+l[i].src); printf("%d\n",dp[n]);
}
return 0;
}

【UVA】11400 照明系统设计 排序+dp的更多相关文章

  1. UVa 11400 照明系统设计

    https://vjudge.net/problem/UVA-11400 题意: 有一个照明系统需要用到n种灯,每种灯的电压为V,电源费用K,每个灯泡费用为C,需要该灯的数量为L.注意到,电压相同的灯 ...

  2. UVa 11400 Lighting System Design(DP 照明设计)

    意甲冠军  地方照明系统设计  总共需要n不同类型的灯泡  然后进入 每个灯电压v  相应电压电源的价格k  每一个灯泡的价格c   须要这样的灯泡的数量l   电压低的灯泡能够用电压高的灯泡替换   ...

  3. UVA11400照明系统设计&& POJ1260Peals(DP)

    紫书P275: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=105116#problem/A POJ http://poj.org/pr ...

  4. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  5. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  6. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  7. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  8. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  9. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

随机推荐

  1. CRM系统数据授权

    1.新建角色,华东二区 2.业务对象中找到客户管理 3.在数据范围中新建数据规则,并进行设置 4.点击授权后,生效. 另:数据权限设置

  2. Android——MaterialDesign之三NavigationView

    NavigationView的使用 这里我们来讲讲在Android5.0之后推出的NavigationView的具体使用方式.和普通的侧拉菜单制作方式一样,首先所有的东西还是都放在一个DrawerLa ...

  3. 从 Aliyun 经典网络迁移到 Aliyun VPC 网络

    由于阿里云策略问题,要求用户从经典网络中全部迁出,搬迁到他们设置的 VPC 网络中.这里的 VPC 大概指的是逻辑上的一个虚拟局域网.即使是实际上你的机器垮机房在阿里云的不同机房.但是他们仍然能从逻辑 ...

  4. Django 2.11 静态页面404 解决

    在settings中配置 STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR,"static"), ...

  5. IWMS后台上传文章,嵌入音频文件代码

    <object width="260" height="69" classid="clsid:6bf52a52-394a-11d3-b153-0 ...

  6. dbExpress操作中用TDBGrid显示数据

    由于一些数据感知组件如TDBGrid等是需要用到数据缓存的,这和dbExpress组件的存取机制是矛盾的.所以当打开数据集时会出现如下内容的警告框:“Operation not allowed on ...

  7. 一、Dev单元格

    二.获取表格数据 int selectRow = gridView1.GetSelectedRows()[0]; string id = this.gridView1.GetRowCellValue( ...

  8. Python——Flask框架——数据库

    一.数据库框架 Flask-SQLAlchemy (1)安装: pip install flask-sqlalchemy (2)Flask-SQLAlchemy数据库URL 数据库引擎 URL MyS ...

  9. C# WebSocket模拟发送接收

    WebSocket服务端 C#示例代码 using System; using System.Collections.Generic; using System.Linq; using System. ...

  10. Visual Studio 2017 and Swagger: Building and Documenting Web APIs

    Swagger是一种与技术无关的标准,允许发现REST API,为任何软件提供了一种识别REST API功能的方法. 这比看起来更重要:这是一个改变游戏技术的方式,就像Web服务描述语言一样WSDL( ...