题意:

  一种游戏,2个人轮流控制棋子在一块有向图上移动,每次移动一条边,不能移动的人为输,无限循环则为平局,棋子初始位置为$S$

  现在有一个人可以同时控制两个玩家,问是否能使得第一个人必胜,并输出一个解,否则判断是否能平局

题解:

  看到这个题首先我想到了强连通分量,但是事实证明求出强连通分量,缩点对解决问题没有什么帮助....

  能写一些看似正确的算法,但其实是假算法来的..

  

  ...........

  所以应该先分析策略,肯定是能赢就赢,不能赢就求平局,最后才算输

  平局很好判断,有向图上,从$S$点跑一边DFS,如果起点的可达子图包含环,就能平局了,具体方法类似tarjan

  其次是判断赢,简单来说就是棋子到达了一个点,路径长度为奇数(可以经过环),且这个点没有出边了

  换句话说,对于每一个点,其实有2种情况,第一个情况是你到达了这个点,到起点的距离是偶数,那肯定不会是终点了

                   第二个情况是你到达了这个点,到起点的距离是奇数,这时候如果还没有出边,那就是答案了,保存当前这个函数堆栈里的点即可

  可是,问题在于,你可以经过一个环,来使得距离变为奇数,没法简单的DFS

  我们考虑,到达每个点时有两种情况,那就是距离起点的距离奇/偶,因此考虑拆点

  把每个点拆开,分别代表奇点和偶点,每次加边的时候,把点一分为三

  $[1,n]$偶数点,$[n+1,2*n]$ 奇数点 $[2n+1,3n]$ 原图

  对于输入的边$(a,b)$,先保存原图,再连2条边,$(a,b+n),(a+n,b)$ 表示如果当前点是偶数距离,距离加一就会变成奇数,反之亦然

  意义在于,这个新的图包含了将"绕一个奇数长度的环,将偶数距离变成奇数距离"这种操作

  如果是奇数长度的环,在环路的尽头会连接到另外一个偶数距离,而偶数长度的环,则不连通

  然后就$O(2(m+n))$的DFS即可

  我试着把判环和找答案放在一个DFS里,但是不太好写,容易TLE,就分开了,判环用原图,找答案用拆点的图

  

#include <bits/stdc++.h>
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
using namespace std;
const int maxn=6e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int head[maxn],nume;
struct node {int to,next;} e[maxm];
void add(int a,int b) {
e[++nume]=(node) {b,head[a]};
head[a]=nume;
}
int flag=0,draw=0;
int top,ans[maxn],s,vis[maxn];
void dfs(int now) {
int cnt=0;
vis[now]=1;
ans[++top]=now;
for(int i=head[now]; i; i=e[i].next) {
int to=e[i].to;
if(flag) return;
if(!vis[to])dfs(to);
cnt++;
}
if(now>n&&cnt==0)flag=1;
if(flag==0)top--;
}
int dfs2(int now){
if(vis[now]==2) return 1;
vis[now]=2;
for(int i=head[now];i;i=e[i].next){
int to=e[i].to;
if(!vis[to]){
if(dfs2(to))return 1;
}
else if(vis[to]==2) return 1;
}
vis[now]=1;
return 0;
}
int main() {
IO;
cin>>n>>m;
rep(i,1,n) {
int a,b;
cin>>a;
while(a--) {
cin>>b;
add(i+2*n,b+2*n);
add(i,b+n);
add(i+n,b);
}
}
cin>>s;
draw=dfs2(s+2*n);
top=0;
memset(vis,0,sizeof vis);
dfs(s);
if(flag) {
cout<<"Win\n";
for(int i=1; i<=top; i++) {
cout<<(ans[i]>n? ans[i]-n:ans[i])<<' ';
}
cout<<endl;
} else if(draw) cout<<"Draw\n";
else cout<<"Lose\n";
return 0;
}

  

CodeForces 937D 936B Sleepy Game 有向图判环,拆点,DFS的更多相关文章

  1. Dwarves (有向图判环)

    Dwarves 时间限制: 1 Sec  内存限制: 64 MB提交: 14  解决: 4[提交][状态][讨论版] 题目描述 Once upon a time, there arose a huge ...

  2. COJ 3012 LZJ的问题 (有向图判环)

    传送门:http://oj.cnuschool.org.cn/oj/home/problem.htm?problemID=1042 试题描述: LZJ有一个问题想问问大家.他在写函数时有时候很头疼,如 ...

  3. HDU 3342 Legal or Not(有向图判环 拓扑排序)

    Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. HDU 5154 Harry and Magical Computer 有向图判环

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5154 题解: 有向图判环. 1.用dfs,正在访问的节点标记为-1,已经访问过的节点标记为1,没有访 ...

  5. Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

    Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...

  6. Codeforces 937 D. Sleepy Game(DFS 判断环)

    题目链接: Sleepy Game 题意: Petya and Vasya 在玩移动旗子的游戏, 谁不能移动就输了. Vasya在订移动计划的时候睡着了, 然后Petya 就想趁着Vasya睡着的时候 ...

  7. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  8. Codeforces 937D - Sleepy Game

    937D - Sleepy Game 思路: dfs. vis[u][0]==1表示u这个点能从s点偶数路径到达 vis[u][1]==1表示u这个点能从s点奇数路径到达 这个样就能保证dfs时每个点 ...

  9. Codeforces Round #460 (Div. 2): D. Substring(DAG+DP+判环)

    D. Substring time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. 人工神经网络入门(4) —— AFORGE.NET简介

    范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门 ...

  2. THE DEFINITIVE GUIDE TO DEBUGGING JAVASCRIPT

    FIGURING OUT WHERE THE ERROR COULD BE READ THE CODE USING THE CONSOLE THE CHROME DEV TOOLS THE DEBUG ...

  3. Java Service Wrapper 使用

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/sinat_26279177/article/details/70807173 1       简介 ...

  4. ACM-ICPC 2018 焦作赛区网络预赛 L Poor God Water(矩阵快速幂,BM)

    https://nanti.jisuanke.com/t/31721 题意 有肉,鱼,巧克力三种食物,有几种禁忌,对于连续的三个食物:1.这三个食物不能都相同:2.若三种食物都有的情况,巧克力不能在中 ...

  5. 网络编程之Socket & ServerSocket

    网络编程之Socket & ServerSocket Socket:网络套接字,网络插座,建立网络通信连接至少要一对端口号(socket).socket本质是编程接口(API),对TCP/IP ...

  6. Webpack2学习记录-2

    这篇在 webpack-demo 目前下新建一个 w2 目录,学习 webpack.config.js 及 与 npm scripts 的使用. 1.w2 下新建一个 webpack.config.j ...

  7. 利用ssh操控远程服务器

    这里的”远程”操控的方法实际上也不是真正的远程.,這此操作方法主要是在一个局域网内远程操控电脑 (在一个路由器下).可以把它做成在互联网中的远程操控, 不过技术难度上加了一个等级, 如果你想是想人在公 ...

  8. MVC 自定义路由

    RouteConfig.cs 代码如下: public class RouteConfig { public static void RegisterRoutes(RouteCollection ro ...

  9. Java EE之Struts2异常[No mapping found for dependency [type=java.lang.String, name='actionPackages'#java.lang.RuntimeException]【摘抄】

    本博文摘自:http://www.blogjava.net/nkjava/archive/2009/03/29/262705.html 出现这个问题,可能是添加了struts2-codebehind包 ...

  10. span i s等行内元素标签之间出现奇怪空格符号

    上述展开信息本来是这样写的,但是很奇怪windows下的测试环境支付时间前面莫名其妙多了个小方框 <p> <span><i>收货人:</i>{remar ...