一道莫比乌斯反演入门题。

首先观察题目要求:的数对数

首先可以发现,这个东西同时有上界和下界,所以并不是很容易计算

那么我们变下形,可以看到:原式=

是不是清晰很多了?(当然没有!)

不,这一步很重要的目的在于消去了下界,使得我们的计算更方便了。

而且可以发现这四个式子的形式是一样的,所以我们对一个式子进行研究就可以了。

那么问题就变成了这样:

求满足的数对数

那么我们再进行研究,可以发现:如果有gcd(i,j)==k,那么一定有gcd(i/k,j/k)==1!

于是我们用i/k替代i,j/k替代j,原式就变为求的数对数

接下来我们考虑计算方法:

首先,如果两个式子的上界相等,则可以直接利用欧拉函数计算

但很不幸的是,上界并不相等,所以我们需要换一种方法做。

接下来进行一些推导:

设数论函数为单位元函数(即),那么可以立刻得到:

基于这一点,我们把上面的[gcd(i,j)==1]进行变形可得:

原式=

这样的话,实际我们只是在研究对于每个d,被统计了多少次!

这样问题就变得简单了:我只需统计对于每个d,有多少个i和j同时是d的倍数即可

而我们知道,在[1,n]范围内,数d的倍数的个数=[n/d]

因此原式立刻变成了:

(注意这里的上界应该是n/k,m/k中较小者)

按理说算到这里就差不多了,可以直接O(n)出解,但是这道毒瘤题居然有多组询问!

这样考虑询问的个数的话时间是不够的。

于是我们还需要优化。

很幸运的是,我们发现表达式中有[n/kd][m/kd]这两个东西

我们知道,对于两个数n,m,在x∈[1,min(n,m)]范围内,[n/x]*[m/x]的取值个数是根号级别的!

这样的话我们只需找出所有这些取值(很显然每一个取值的取等区间都是连续的),然后对应地乘上莫比乌斯函数的前缀和就可以了!

贴代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
int T;
int pri[50005];
bool used[50005];
int miu[50005];
int smiu[50005];
int cnt=0;
int a,b,c,d,k;
void init()
{
miu[1]=1;
for(int i=2;i<=50000;i++)
{
if(!used[i])
{
pri[++cnt]=i;
miu[i]=-1;
}
for(int j=1;j<=cnt&&i*pri[j]<=50000;j++)
{
used[i*pri[j]]=1;
if(i%pri[j]==0)
{
miu[i*pri[j]]=0;
break;
}
miu[i*pri[j]]=-miu[i];
}
}
for(int i=1;i<=50000;i++)
{
smiu[i]=smiu[i-1]+miu[i];
}
}
ll solve(ll x,ll y)
{
ll ans=0;
if(x>y)
{
swap(x,y);
}
x/=k,y/=k;
int last=0;
for(int i=1;i<=x;i=last+1)
{
last=min(x/(x/i),y/(y/i));
ans+=(smiu[last]-smiu[i-1])*(x/i)*(y/i);
}
return ans;
}
int main()
{
scanf("%d",&T);
init();
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",solve(b,d)-solve(a-1,d)-solve(b,c-1)+solve(a-1,c-1));
}
return 0;
}

bzoj 2301的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  3. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  4. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  5. BZOJ 2301 Problem b

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 冬令营听了莫比乌斯,这就是宋老师上课讲的例题咯[今天来实现一下] #include& ...

  6. BZOJ 2301 Problem b(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2301 题意:每次给出a,b,c,d,K.求有多少数对(x,y)满足a<=x< ...

  7. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  8. BZOJ 2301 Problem B(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c&l ...

  9. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

  10. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

随机推荐

  1. 爬虫BS4—淘女郎

    1.修改网页头 用独自的py文件getheaders,随机返回header getheaders文件 import random headerstr = """Mozil ...

  2. Git更新远程仓库代码到本地(转)

    参考链接:https://blog.csdn.net/chailyuan/article/details/53292031 在下载一个较大的github项目以后,当该项目代码更新以后,我们想将更新的内 ...

  3. Object的wait/notify/notifyAll&&Thread的sleep/yield/join/holdsLock

    一.wait/notify/notifyAll都是Object类的实例方法 1.wait方法:阻塞当前线程等待notify/notifyAll方法的唤醒,或等待超时后自动唤醒. wait等待其实是对象 ...

  4. spring-session+Redis实现Session共享

    关于session共享的方式有多种: (1)通过nginx的ip_hash,根据ip将请求分配到对应的服务器 (2)基于关系型数据库存储 (3)基于cookie存储 (4)服务器内置的session复 ...

  5. go语言time包的学习(Time,Location,Duration,Timer,Ticker)

    package main;   import (     "time"     "fmt" )   func main() {     //time.Time代 ...

  6. 【sql inject】sql盲注技巧

    SAMPLE 知识点 使用 AND 1 = 1 / 1 或者 1 = 1 / 0 判断是否存在注入,如果正确就会返回页面,如果错误就是1/0语法错误使得页面报错: queueID = 743994 A ...

  7. 【转】python模块分析之unittest测试(五)

    [转]python模块分析之unittest测试(五) 系列文章 python模块分析之random(一) python模块分析之hashlib加密(二) python模块分析之typing(三) p ...

  8. python中的正则表达式--re模块

    参考博客:https://www.cnblogs.com/tina-python/p/5508402.html 这里说一下python的re模块即正则表达式模块,先列出其中涉及到的各种字符和模式等: ...

  9. C#代码处理前台html标签拼接

    之前一篇文章是写,JavaScript处理特殊字符拼接时截断问题.最近在处理公司老软件兼容性升级时碰到的一个类似的问题,这次是后台拼接字符串,前台.aspx页面显示的.中间走了两次弯路,在此记录一下. ...

  10. 《超越C++标准库:Boost库导引》:序

    序(Foreword) C++社区正在发生着一些美妙的事情.尽管C++仍然是世界上使用最广泛的编程语言,它依旧在变得更加强大而且易用.不信么?容我慢慢道来. 当前版本的标准C++是在1998年最终确定 ...